
SEMI Draft Document 3626 2003/04/23
OASISTM - Open Artwork System Interchange Standard
ns

i-
1 Purpose

1.1 The purpose of this specification is to define an
interchange and encapsulation format for hierarchical
integrated circuit mask layout information.

1.2Background—In the fall of 2001, SEMI’s Data Path
Task Force formed a working group to define a succe
sor to the venerable GDSII Stream format, which had
served the I.C. industry as ade factostandard for layout
interchange for more than two decades. The old forma
limited by 16-bit and 32-bit internal integer fields, by its
inefficient representation of cell-native geometric fig-
ures, and by high structural overhead, was becoming
difficult to use for leading-edge designs, and file sizes
were becoming unwieldy, in some cases growing to
many tens of gigabytes. The successor format was ch
tered with several overall goals:

• Achieve at least an order-of-magnitude file siz
improvement compared to GDSII Stream.

• Remove all 16-bit and 32-bit integer width restric
tions—make the new format fully 64-bit capable.

• Efficiently represent cells with large payloads of fla
native geometric figures.

• Provide a richer information palette to facilitate inter
change of layout-related information between desig
and manufacturing.

In the months leading up to the formation of the SEM
Data Path Task Force, International Sematech sponso
a series of meetings focusing on Mask EDA issues.
Many of the Task Force participants were also involve
in these Sematech meetings, and carried forward mu
useful information from those sessions into the defini-
tion of this specification.

2 Scope

2.1 This format is designed primarily to encapsulate
hierarchical mask layout for interchange between sys
tems such as EDA software, mask writing tools, and
mask inspection/repair tools.

2.2 This format is designed to be both hardware- and
software-independent.
SEMI Draft Document 3626 2003/04/23 1
s-

t,

ar-

e

-

t

-
n

I
red

d
ch

-

3 Limitations

3.1 Use of extension records such as XNAME, XELE-
MENT, and XGEOMETRY may impair interoperability
between tools. It is recommended that these extensio
be used primarily for prototyping, and that interopera-
bility be maintained through the formal inclusion of
extensions to this specification.

4 Referenced Standards

4.1 IEEE Standards1

IEEE 754-1985 - IEEE Standard for Binary Floating-
Point Arithmetic

4.2 ISO Standards2

ISO-646-IRV - “US-ASCII” Character Set

ISO-3309 - Information technology—Telecommunica-
tions and information exchange between systems—
High-level data link control (HDLC) procedures—
Frame structure

4.3 IETF Standards3

RFC 1951 - DEFLATE Compressed Data Format Spec
fication version 1.3

1. Institute of Electrical and Electronics Engineers
IEEE Operations Center, 445 Hoes Lane, P.O. Box 1331, Piscat-
away, New Jersey 08855-1331, USA. Telephone: 732-981-0060;
FAX: 732-981-1721.
Website: www.ieee.org

2. International Organization for Standardization
ISO Central Secretariat, 1, rue de Varembé, Case postale 56,
CH-1211 Geneva 20, Switzerland. Telephone: 41-22-749-01-11;
FAX: 41-22-733-34-30
Website: www.iso.ch

3. Internet Engineering Task Force
Website: www.ietf.org
© SEMI 2003

5 Terminology

5.1 Abbreviations and Acronyms

5.1.1BNF—Backus-Naur Form

5.1.2EDA—Electronic Design Automation

5.1.31OASISTM—Open Artwork System Interchange
Standard

5.2 Definitions

5.2.1 Most definitions of terminology specific to OASIS
are found within the text of the paragraphs that contai
them.

5.2.2Cell—a named object in a layout hierarchy, con-
taining native geometric information, annotation infor-
mation, and/or placements of other cells.

5.2.3Placement—a specification by reference that a
copy of a cell is to be placed within the coordinate spac
of another cell at a particular location, orientation, and
scale. Cell placement is the fundamental mechanism
which makes hierarchy within the OASIS file possible

5.2.4Geometry—a two-dimensional geometric figure
such as a polygon, rectangle, trapezoid, path, circle, e
with inherent attributes oflayer anddatatype.

5.2.5Property—an annotation element consisting of a
name plus an optional list of values, supplying descrip
tive information about the characteristics of the file or
one of its components.

5.2.6Record—the principal data division in an OASIS
file.

5.2.7Text Element—an annotation element consisting o
an (x,y) coordinate point and an associated string.

5.3 Symbols

5.3.1“->” — indicates a mapping of an argument to it
contents or its meaning.

1. Used with consent by the owner.
© SEMI 2003 2
n

e

.

tc.

-

f

s

SEMI Draft Document 3626 2003/04/23

e

n
ions.

t hier-
 Each

ct

ocu-
e consid-
y
e (such
ers to

n the

e actual
6 OASIS BASICS

6.1 An OASIS file is a sequence ofbytesdivided intorecords. The length of a record is discernible from its structur
and is not explicit (in contrast to GDSII Stream, where all record lengths are explicit).

6.2 An OASIS file has the following overall syntax (using the modified BNF notation described in section 36 o
page 30). Individual record types appear in bold uppercase and are described in more detail in following sect

<oasis-file> -> <magic-bytes>START { CBLOCK | PAD | PROPERTY | <cell> | <name> }*END
<name> -> {CELLNAME | TEXTSTRING | LAYERNAME | PROPNAME | PROPSTRING | XNAME }
<cell> -> { CELL { CBLOCK | PAD | PROPERTY | XYRELATIVE | XYABSOLUTE | <element> }* }
<element> -> { <geometry> |PLACEMENT | TEXT | XELEMENT }
<geometry> -> {RECTANGLE | POLYGON | PATH | TRAPEZOID | CTRAPEZOID | CIRCLE | XGEOMETRY }

6.3 An OASIS file may represent a complete layout hierarchy, a portion of a layout hierarchy, or multiple layou
archies. These interpretations are not intrinsic to the format and are governed by application semantics only.
OASIS file must be syntactically complete—it must begin with <magic-bytes> and contain at least aSTART and
END record.

6.4 The <magic-bytes> element is a sequence of 13 ASCII characters: “%SEMI-OASIS<CR><NL>” where
<CR><NL> represents the ASCII hexadecimal sequence0D 0A. It is provided as a recognition signature to make
OASIS files easily identifiable to the UNIXfile utility. (The intent of the carriage return and newline is to help dete
corruption by FTP programs operating in non-binary mode.)

6.5EXCEPTIONHANDLING: OASIS processors should treat any deviation from the syntax presented in this d
ment as a fatal error. OASIS readers are not required to implement syntax-check preprocessing in order to b
ered compliant with this specification. The sequence in which exceptions are detected and reported is entirel
application-dependent. In addition, for access requests which do not require the interpretation of the entire fil
as retrieval of a single cell or a subset of the cells within the file), this specification does not require OASIS read
exhaustively check the validity of the entire file.

7 DATA CONSTRUCTS

7.1 BYTES

7.1.1 A byte is a fixed-length 8-bit value. Bit patterns for bytes are shown with the least significant bit (bit 0) o
right.

7.2 INTEGERS

7.2.1 Anunsigned-integer is an N-byte (N > 0) integer value. The low-order byte appearsfirst in the OASIS format.
Integer byte length is variable and integers are represented asbyte-continuations where the most significant bit of
each byte except the last in the chain is a 1; the remaining seven bits in each byte are concatenated to form th
integer value itself. There are no restrictions on integer byte length (and hence, magnitude).

Figure 7-1
Unsigned-Integer Representation

C Significand C Significand. . .
Byte 0 (LSB) Byte 1 Byte n (MSB)

C Significand
SEMI Draft Document 3626 2003/04/23 3 © SEMI 2003

w-
th rep-

2-bit

nt
ated by
7.2.2 Asigned-integer follows the same byte-continuation scheme as anunsigned-integer, and is stored in signed-
magnitude form, with thesignificand left-shifted one bit and the sign bit stored in the least significant bit of the lo
order (first) byte. A sign bit of 0 indicates a positive number, and a sign bit of 1 indicates a negative number. Bo
resentations of zero (+0 and -0) should be treated as numerically equivalent for the purposes of comparison.

Figure 7-2
Signed Integer Representation

7.2.3EXCEPTIONHANDLING: OASIS processors which only support integer data in a restricted space (e.g., 3
space) should treat any magnitude outside of this space as a fatal error.

7.3 REALS

7.3.1 Areal number may be stored in one of several rational forms, or as a single-precision 4-byte (ieee-4) or double-
precision 8-byte (ieee-8) floating point value. The rational forms are usually more compact than the floating-poi
forms, and have the advantage of being able to precisely represent many values which can only be approxim
the binary floating point representation. The type of representation is stored in anunsigned-integer which precedes
the significant portion of the real:

Table 7-1: Unsigned-Integer Examples

 UNSIGNED-INTEGER VALUE BINARY REPRESENTATION

0 00000000

127 01111111

128 10000000 00000001

16,383 11111111 01111111

16,384 10000000 10000000 00000001

Table 7-2: Signed Integer Examples

 SIGNED INTEGER VALUE BINARY REPRESENTATION

0 00000000

+1 00000010

-1 00000011

+63 01111110

-64 10000001 00000001

+8,191 11111110 01111111

-8,192 10000001 10000000 00000001

C Significand C Significand. . .
Byte 0 (LSB) Byte 1 Byte n (MSB)

C SignificandS
© SEMI 2003 4 SEMI Draft Document 3626 2003/04/23

 the
54-

side
7.3.2 In types 0 and 1, thereal is a whole number—its fractional portion is zero. In types 2 and 3, theunsigned-inte-
ger represents the denominator of a reciprocal, with an implicit numerator of 1. Types 4 and 5 are ratios, with
numerator listed first, followed by the denominator. Types 6 and 7 are binary floating point numbers in IEEE 7
1985 format, with the least significant byte of thefraction (byte 0) storedfirst.

Figure 7-3
IEEE Floating Point Formats

7.3.3EXCEPTIONHANDLING: For types 2-5, a denominator of 0 should be treated as a fatal error. A type out
the range of 0-7 should be treated as a fatal error.

Table 7-3: Real Number Types

 FORMAT MEANING

‘0’ unsigned-integer Positive whole number

‘1’ unsigned-integer Negative whole number

‘2’ unsigned-integer Positive reciprocal

‘3’ unsigned-integer Negative reciprocal

‘4’ unsigned-integer unsigned-integer Positive ratio

‘5’ unsigned-integer unsigned-integer Negative ratio

‘6’ IEEE-4-byte-float Single-precision floating point

‘7’ IEEE-8-byte-float Double-precision floating point

Table 7-4: Real Number Examples

VALUE RATIONAL FORM IEEE-4 FORM

0.0 00000000 00000000 00000110 00000000 00000000 00000000 00000000

1.0 00000000 00000001 00000110 00000000 00000000 10000000 00111111

-0.5 00000011 00000010 00000110 00000000 00000000 00000000 10111111

0.3125 00000100 00000101 00010000 00000110 00000000 00000000 10100000 00111110

1/3 00000010 00000011 00000110 10101011 10101010 10101010 00111110

-2/13 00000101 00000010 00001101 00000110 11011001 10001001 00011101 10111110

Byte 0Byte 1Byte 2Byte 3

ieee-4 float
S Exponent Fraction

Byte 0Byte 1Byte 2Byte 3Byte 4Byte 5Byte 6Byte 7

ieee-8 float
S Exponent Fraction
SEMI Draft Document 3626 2003/04/23 5 © SEMI 2003

e. An
 a

r of

irec-
ent is

ode

ce-
, 6 for
magni-

al dis-
as a

eger
). The
ist of
7.4 STRINGS

7.4.1 Astring is a sequence of zero or more bytes (“characters”) preceded by anunsigned-integer representing the
number of characters in the string:

string -> length byte*

Strings in OASIS are further sub-typed by semantic. Ab-string (“binary string”) is a string which may contain any
combination of 8-bit character codes in any sequence. Ana-string (“ASCII string”) may contain onlyprintable
ASCII character codes (hexadecimal 21-7E) plus the SP (space) character (hexadecimal 20), in any sequenc
n-string (“name string”) may contain onlyprintable ASCII character codes (hexadecimal 21-7E), and must have
length greater than zero.

7.4.2 The set ofprintable ASCII characters consists of hexadecimal character codes 21-7E. In ascending orde
character code, we have:

!"#$%&’()*+,-./0123456789:;<=>?@ [21-40]
ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_‘ [41-60]
abcdefghijklmnopqrstuvwxyz{|}~ [61-7E]

This excludes space (SP), tabs (HT, VT), and all other control characters.

7.4.3EXCEPTION HANDLING: OASIS processors should treat illegal characters ina-strings or n-strings as fatal
errors. Zero-lengthn-strings should also be treated as fatal errors.

7.5 DELTAS

7.5.1 Adelta represents geometric data (coordinates, vectors, planar offsets, etc.).

7.5.2 A1-deltais stored as asigned-integer and represents a horizontal or vertical displacement. Bit 0 encodes d
tion: 0 for east or north, 1 for west or south. The remaining bits are the magnitude. Horizontal or vertical alignm
implied by context.

7.5.3 A2-deltais stored as anunsigned-integer and represents a horizontal or vertical displacement. Bits 0-1 enc
direction: 0 for east, 1 for north, 2 for west, and 3 for south. The remaining bits are the magnitude.

7.5.4 A3-deltais stored as anunsigned-integer and represents a horizontal, vertical, or 45-degree diagonal displa
ment. Bits 0-2 encode direction: 0 for east, 1 for north, 2 for west, 3 for south, 4 for northeast, 5 for northwest
southwest, and 7 for southeast. The remaining bits are the magnitude (for horizontal and vertical deltas) or the
tude of the projection onto the x- or y-axis (for 45-degree deltas).

7.5.5 Ag-delta has two alternative forms and is stored either as a singleunsigned-integer or as a pair ofunsigned-
integers. The first form is indicated when bit 0 is zero, and represents a horizontal, vertical, or 45-degree diagon
placement, with bits 1-3 encoding direction, and the remaining bits storing the magnitude, in the same fashion3-
delta. The second form represents a general (x,y) displacement and is a pair ofunsigned-integers. Bit 0 of the first
integer is 1. Bit 1 of the first integer is the x-direction (0 for east, 1 for west). The remaining bits of the first int
represent the magnitude in the x-direction. Bit 0 of the second integer is the y-direction (0 for north, 1 for south
remaining bits of the second integer represent the magnitude in the y-direction. Both forms may appear in a lg-
deltas.
© SEMI 2003 6 SEMI Draft Document 3626 2003/04/23

of the
Figure 7-4
Delta Types

7.6 REPETITIONS

7.6.1 Arepetitionrepresents an “array” of cell placements, geometries, or text elements. The repetition is part
PLACEMENT , <geometry>, or TEXT record itself. A repetition consists of anunsigned-integerwhich encodes the
type, followed by any related repetition parameters:

x-dimension, y-dimension, x-space, y-space, dimension, n-dimension, m-dimension, andgrid are allunsigned-
integers. displacement, n-displacement, andm-displacement areg-deltas.

Table 7-5: Delta Examples

BIT PATTERN TYPE MEANING

11111001 00100011 1-delta∆ = -2300

11111000 00100011 1-delta∆ = +2300

10011000 00101010 2-delta∆x = +1350

10011011 00101010 2-delta∆y = -1350

11001101 00000001 3-delta∆x = -25,∆y = +25

11010111 00000111 3-delta∆x = +122,∆y = -122

11101001 00000011 01111010 g-delta2 ∆x = +122,∆y = +61

11101100 00000101 g-delta1 ∆x = -46,∆y = -46

10111011 00000001 10110111 00001111 g-delta2 ∆x = -46,∆y = -987

Table 7-6: Repetition Types

 TYPE FORMAT

0 re-use the previous repetition definition

1 x-dimension y-dimension x-space y-space
2 x-dimension x-space
3 y-dimension y-space
4 x-dimension x-space1 ... x-spaceN-1

5 x-dimension grid x-space1 ... x-spaceN-1

6 y-dimension y-space1 ... y-spaceM-1

7 y-dimension grid y-space1 ... y-spaceM-1

8 n-dimension m-dimension n-displacement m-displacement
9 dimension displacement
10 dimension displacement1 ... displacementP-1

11 dimension grid displacement1 ... displacementP-1

2-DELTA

XXX...XXXDD

3-DELTA

XXX...XXXDDD

G-DELTA

XXX...XXXDDD0 (Form 1)

or

XXX...XXXD1 XXX...XXXD (Form 2)

1-DELTA

XXX...XXXXD
SEMI Draft Document 3626 2003/04/23 7 © SEMI 2003

of

the
f

e
f

n the

 is

dis-
7.6.2TYPE 0 indicates that the previous repetition description, stored in modal variablerepetition, is to be re-used.
(See section 10 on page 12.) No additional values are stored with this type.

7.6.3TYPE 1 is an N-column (N > 1) by M-row (M > 1) matrix with uniform horizontal and vertical spacing
between the elements.x-dimensionis N - 2 andy-dimensionis M - 2. The (x-offset, y-offset) (cumulative spacing in
the (horizontal,vertical) direction) of element (i,j) of the repetition (i = 0, ..., N-1 and j = 0, ..., M-1) is
(i * x-space, j * y-space).

7.6.4TYPE 2 is an N-column (N > 1) by 1-row vector with uniform horizontal spacing between the elements.x-
dimension is N - 2. The (x-offset, y-offset) (cumulative spacing in the (horizontal,vertical) direction) of element i
the repetition (i = 0, ..., N-1) is (i *x-space, 0).

7.6.5TYPE 3 is a 1-column by M-row (M > 1) vector with uniform vertical spacing between the elements.y-dimen-
sion is M - 2. The (x-offset, y-offset) (cumulative spacing in the (horizontal,vertical) direction) of element j of the
repetition (j = 0, ..., M-1) is (0, j *y-space).

7.6.6TYPE 4 is an N-column (N > 1) by 1-row vector with (potentially) non-uniform horizontal spacing between
elements.x-dimension is N - 2. The (x-offset, y-offset) (cumulative spacing in the (horizontal,vertical) direction) o
element i of the repetition (i = 0, ..., N-1) is (x-space0 + ... +x-spacei, 0), withx-space0 = 0.

7.6.7TYPE 5 is identical toTYPE 4, except that all offset values must be multiplied bygrid during expansion of the
repetition.

7.6.8TYPE 6 is a 1-column by M-row (M > 1) vector with (potentially) non-uniform vertical spacing between th
elements.y-dimension is M - 2. The (x-offset, y-offset) (cumulative spacing in the (horizontal,vertical) direction) o
element j of the repetition (j = 0, ..., M-1) is(0, y-space0 + ... +y-spacej), with y-space0 = 0.

7.6.9TYPE 7 is identical toTYPE 6, except that all offset values must be multiplied bygrid during expansion of the
repetition.

7.6.10TYPE 8 is an N (N > 1) by M (M > 1) repetition with uniform and (potentially) diagonal displacements
between the elements.n-dimension is N - 2 and m-dimension is M - 2. Definingn-displacement in terms of its
componentsnx-spaceandny-space(and similarly form-displacement), the (x-offset, y-offset) (cumulative spacing
in the (horizontal,vertical) direction) of element (i,j) of the repetition (i = 0, ..., N-1 and j = 0, ..., M-1) is
(i * nx-space+ j * mx-space, i * ny-space + j * my-space).

7.6.11TYPE 9 is a P-element (P > 1) repetition with uniform and (potentially) diagonal displacements betwee
elements.dimension is P - 2. Definingdisplacement in terms of its componentsx-space andy-space, the (x-offset,
y-offset) (cumulative spacing in the (horizontal,vertical) direction) of element k of the repetition (k = 0, ..., P-1)
(k * x-space, k * y-space).

7.6.12TYPE 10 is a P-element (P > 1) repetition with (potentially) non-uniform and arbitrary two-dimensional
placements between the elements.dimension is P - 2. Definingdisplacementk in terms of its componentsx-spacek
andy-spacek, the (x-offset, y-offset) (cumulative spacing in the (horizontal,vertical) direction) of element k of the
repetition (k = 0, ..., P-1) is (x-space0 + ... +x-spacek, y-space0 + ... +y-spacek) with x-space0 = y-space0 = 0).

7.6.13TYPE 11 is identical toTYPE 10, except that all offset values must be multiplied bygrid during expansion of
the repetition.
© SEMI 2003 8 SEMI Draft Document 3626 2003/04/23

r. A

-

 edge,
 2.
Figure 7-5
Repetition Types

7.6.14EXCEPTIONHANDLING: A repetitiontype outside the range of 0 to 11 should be treated as a fatal erro
repetition type of 0 may not be the firstrepetition type used within a cell.

7.7 POINT LISTS

7.7.1 Apoint-list represents a list of geometric coordinates for polygons or paths, and consists of anunsigned-integer
denoting its type, followed by a list ofdeltas, in one of several formats. The initial vertex at (x,y) is supplied by the
POLYGON or PATH record and is not part of thepoint-list; vertex-count (an unsigned-integer) is the number of
points or deltas,excluding the initial vertex and any implicit vertices.

7.7.2 Apoint-list of type 0 consists of a list of1-deltas, representing alternating horizontal and vertical relative dis
placements, with the first displacement implicitlyhorizontal. When describing a polygonpoint-list in this form, the
final two displacements are omitted, since they can be unambiguously implied from the current point, the last
and the starting point. When describing a polygon,vertex-count must be an even number greater than or equal to

Table 7-7: Point List Types

 TYPE FORMAT DESCRIPTION

0 vertex-count [1-delta [... 1-delta]] Implicit manhattan delta point-list (horizontal-first)
1 vertex-count [1-delta [... 1-delta]] Implicit manhattan delta point-list (vertical-first)
2 vertex-count [2-delta [... 2-delta]] Explicit manhattan delta point-list
3 vertex-count [3-delta [... 3-delta]] Explicit octangular delta point-list
4 vertex-count [g-delta [... g-delta]] Explicit all-angle delta point-list
5 vertex-count [g-delta [... g-delta]] Explicit all-angle double-delta point-list

TYPE 1
TYPE 2

TYPE 3

TYPES 6,7

TYPES 4,5

TYPES 10,11

TYPE 8

TYPE 9

n-displacement
m-displacement
SEMI Draft Document 3626 2003/04/23 9 © SEMI 2003

-

and the

.
d to

.
d to

d to

ent
d y
rela-

gures
7.7.3 Apoint-list of type 1 consists of a list of1-deltas, representing alternating vertical and horizontal relative dis
placements, with the first displacement implicitlyvertical. When describing a polygonpoint-list in this form, thefinal
twodisplacements are omitted, since they can be unambiguously implied from the current point, the last edge,
starting point. When describing a polygon,vertex-count must be an even number greater than or equal to 2.

7.7.4 Apoint-list of type 2 consists of a list of2-deltas, representing a series of manhattan relative displacements
When describing a polygonpoint-list in this form, the final displacement is omitted, since the polygon is assume
be implicitly closed, but this final implicit displacement must be amanhattandisplacement, with either∆x=0 or∆y=0.

7.7.5 Apoint-list of type 3 consists of a list of3-deltas, representing a series of octangular relative displacements
When describing a polygonpoint-list in this form, the final displacement is omitted, since the polygon is assume
be implicitly closed, but this final implicit displacement must be anoctangular displacement at an angle that is an
integral multiple of 45˚.

7.7.6 Apoint-list of type 4 consists of a list ofg-deltas, representing a series of any-angle relative displacements.
When describing a polygonpoint-list in this form, the final displacement is omitted, since the polygon is assume
be implicitly closed.

7.7.7 Apoint-listof type 5 consists of a list ofg-deltas, representing a series of adjustments to a relative displacem
vector, with the initial vector set to (∆x=0, ∆y=0). To calculate the coordinates of each successive point, the x an
components of each successiveg-deltaare added to the relative displacement vector, which in turn describes the
tive displacement from the current point to the next point. When describing a polygonpoint-list in this form, the final
displacement is omitted, since the polygon is assumed to be implicitly closed. This form ofpoint-list is intended to
allow more compact representation of polygons and paths which are approximations of large-field curvilinear fi
on a fine grid, where the curvature is not extreme.

Figure 7-6
Point Lists Describing Polygons

Table 7-8: Polygon Point Lists for Figure 7-6

 TYPE BIT PATTERN

0 00000000 00000100 00001100 00001000 00010001 00000101

1 00000001 00000100 00010001 00000100 00000100 00000100

2 00000010 00000101 00100000 00011001 00010010 00001011 00010010

3 00000011 00000100 00010101 00100001 00110000 00010011

4 00000100 00000010 01000100 00001001 00001101

5 00000101 00001001 00000001 00000011 00101001 00000000 00000001 00000100
00000001 00000011 00000001 00000011 00101011 00000100 00101011 00000000
00000001 00000011 00000001 00000011

(x,y)

(x,y)

Type 0

Type 1

(x,y)

Type 2

Type 3

(x,y)

Type 4

(x,y)

Type 5

(x,y)
© SEMI 2003 10 SEMI Draft Document 3626 2003/04/23

For

ror.

,

7.7.8EXCEPTION HANDLING: Apoint-list type outside the range of 0 to 5 should be treated as a fatal error.
point-list types 0-1, successive coincident points and/or adjacent colinear edges are not permitted. Anon-manhattan
implicit closing vector for a polygon usingpoint-list type 2, or anon-octangularimplicit closing vector for a polygon
usingpoint-list type 3 should be treated as a fatal error. For polygons usingpoint-list types 0-1, a vertex count which
is odd or less than 2 should be treated as a fatal error.

7.8 PROPERTY VALUES

7.8.1 Aproperty-value stores one element of a property value list. It consists of anunsigned-integer which encodes
its type, followed by either the value itself or a reference number. Types 0-7 arereals which conform to the scheme
described in Table 7-3 on page 5.

7.8.2EXCEPTIONHANDLING: A property-valuetype outside the range of 0 to 15 should be treated as a fatal er
Use of apropstring-reference-number for which there is no correspondingPROPSTRING record within the same
OASIS file should be treated as a fatal error.

8 CELL REFERENCING

8.1 As in GDSII Stream, cells in OASIS are identified byname. TheCELL record not only introduces a cell defini-
tion but also defines its name.PLACEMENT records refer by name to the cell being placed. As in GDSII Stream
there are no “anonymous” cells in OASIS.

9 LAYERS, DATATYPES, AND TEXTTYPES

9.1 As in GDSII Stream, every <geometry> has associated with it alayer number and adatatype number and every
text element has associated with it atextlayer number and atexttype number.

Table 7-9: Property Value Types

 TYPE FORMAT

0-7 real (see Table 7-3)

8 unsigned-integer
9 signed-integer
10 a-string
11 b-string
12 n-string
13 propstring-reference-number (implied a-string)
14 propstring-reference-number (implied b-string)
15 propstring-reference-number (implied n-string)
SEMI Draft Document 3626 2003/04/23 11 © SEMI 2003

rough

he
dal vari-

n
n

ssed
 its
n

10 MODAL VARIABLES

10.1 For compaction purposes, selected data elements in many OASIS records may be implicitly specified th
the use ofmodal variables or stored state. At the beginning of the file, and whenever aCELL or <name> record is
encountered, all modal variables with the exception ofplacement-x, placement-y, geometry-x, geometry-y, text-x, and
text-y, are set to a state ofundefined; the exceptions just mentioned are set to 0. As various elements appear in t
cell’s description, modal variables related to those elements are set from the elements’ definitions. These mo
ables can then be used implicitly by successive elements. A modal variable may hold a single value such asgeometry-
w, or a multi-variable structure such as arepetition.

10.2 Modal variablexy-modegoverns the interpretation of thex andy fields for those related record types indicated i
Table 10-1. Two interpretation modes are provided:absoluteandrelative. See section 21 on page 18 for a discussio
of how these two modes work.

10.3EXCEPTION HANDLING: An OASIS record which implicitly references a modal variable which is in the
undefined state should be treated as a fatal error.

11 RECORDS

11.1 The basic unit of information in an OASIS file is arecord. A record consists of a singleunsigned-integerwhich
encodes therecord-ID, followed by the remainder of the record’s descriptive data. In this specification,record-ID
values are displayed as decimal numbers enclosed in apostrophes.

11.2 TheCBLOCK record is a special case since it encapsulates a series of ordinary records in byte-compre
form. When aCBLOCK record is encountered while reading an OASIS file, it is first necessary to decompress
data, which will produce one or more ordinary records, which can in turn be decoded. For more information o
CBLOCK records refer to section 35 on page 28.

Table 10-1: Modal Variables

 MODAL VARIABLES RELATED RECORDS

repetition PLACEMENT, TEXT, POLYGON, PATH,
RECTANGLE, TRAPEZOID, CTRAPEZOID,
CIRCLE, XGEOMETRY

placement-x, placement-y, placement-cell PLACEMENT
layer, datatype POLYGON, PATH, RECTANGLE, TRAPEZOID,

CTRAPEZOID, CIRCLE, XGEOMETRY
textlayer, texttype, text-x, text-y, text-string TEXT

geometry-x, geometry-y POLYGON, PATH, RECTANGLE, TRAPEZOID
CTRAPEZOID, CIRCLE, XGEOMETRY

xy-mode PLACEMENT, TEXT, POLYGON, PATH,
RECTANGLE, TRAPEZOID, CTRAPEZOID,
CIRCLE, XGEOMETRY,
XYABSOLUTE, XYRELATIVE

geometry-w, geometry-h RECTANGLE, TRAPEZOID, CTRAPEZOID
polygon-point-list POLYGON

path-halfwidth, path-point-list
path-start-extension, path-end-extension

PATH

ctrapezoid-type CTRAPEZOID
circle-radius CIRCLE

last-property-name, last-value-list PROPERTY
© SEMI 2003 12 SEMI Draft Document 3626 2003/04/23

length.
ser-
ed-
ible to

”

te

ss
11.3 Most records have an implicit length—the record must be parsed and decoded in order to determine its
TheXNAME , XELEMENT , andXGEOMETRY records are exceptions to this. They encapsulate all of their u
defined data in a single variable-lengthb-string, so they can be used for prototyping new record types, hiding emb
ded proprietary data, supporting local non-interoperable extensions, etc. without rendering an OASIS file illeg
older readers, which can simply note the string length and skip over the record.

11.4EXCEPTION HANDLING: OASIS processors should treat the nesting of aCBLOCK record within another
CBLOCK record as a fatal error.

12 PAD RECORD

12.1 APAD record provides a simple way to reserve space within an OASIS file. It has the following format:

‘0’

12.2PAD records may be inserted between any other two records.

12.3EXCEPTION HANDLING: The presence of aPAD record before theSTART record or after theEND record
should be treated as a fatal error.

13 START RECORD

13.1 ASTART record identifies the beginning of an OASIS file, and immediately follows the <magic-bytes>
sequence described in section 6.4 on page 3. It has the following format:

‘1’ version-string unit offset-flag [table-offsets]

13.2 Theversion-string is ana-stringwhose value is “1.0” for this version of the OASIS specification. Version “1.0
corresponds to the OASIS format as described in this document.

13.3 Theunit declaration is apositive real number which specifies the global precision of the OASIS file’s coordina
system in grid steps per micron. The OASISunit value is essentially the reciprocal of the first value in the GDSII
Stream UNITS record.

13.4offset-flag(anunsigned-integer) is 0 when thetable-offsetsstructure is stored in theSTART record;offset-flag
is 1 when thetable-offsets structure is instead stored in theEND record. The option of storingtable-offsets in the
END record is provided to make it possible to write an OASIS file sequentially, with no seek-and-update acce
required, while still providing cell-level random-access capability for subsequent readers of that OASIS file.

13.5 Thetable-offsetsstructure consists of 6pairs ofunsigned-integers. Each pair consists of aflagfield, and a corre-
spondingbyte-offset field, in the following order:

Table 13-1: Table Offset Order

FLAG BYTE-OFFSET

cellname-flag cellname-offset

textstring-flag textstring-offset

propname-flag propname-offset

propstring-flag propstring-offset

layername-flag layername-offset

xname-flag xname-offset
SEMI Draft Document 3626 2003/04/23 13 © SEMI 2003

rst

have

-

mes,

e
-

en

on any

l-

D

g val-
13.6 Each of theflagfields is either 1, indicatingstrict mode, or 0, indicatingnon-strictmode, for its respective table.
The correspondingbyte-offset field indicates the position of the first record of its respective table relative to the fi
byte (byte 0) of the OASIS file. Abyte-offset of 0 indicates the absence of that particular table.

13.7 Innon-strictmode, records of the corresponding type may occur anywhere in the file, even if some of them
been gathered into a table pointed to by the correspondingbyte-offset.

13.8 Instrict mode,all records of the corresponding type (plus any associatedPROPERTY records) have been gath
ered into a single contiguous table pointed to by the correspondingbyte-offset. PAD records are also permitted in
strict mode tables. In addition,strict modeguarantees that all references to the corresponding class of objects (na
strings, or cells) are made exclusively byreference-number.

13.9 When a givenstrict mode table has been encapsulated within one or moreCBLOCK records, the corresponding
byte-offset should point to the first byte of the firstCBLOCK record containing that table, and the first record of th
table must be the first record which appears after decompression of theCBLOCK record. Adherence to this require
ment means that it is not permissible to encapsulate more than onestrict mode table within a singleCBLOCK
record, nor is it permissible to begin astrict mode table in the middle of aCBLOCK record.

13.10EXCEPTION HANDLING: The absence of aSTART record as the first record in an OASIS file should be
treated as a fatal error. A value ofunit which isNaN, Inf, or non-positive, should also be treated as a fatal error. Wh
a given table offset is nonzero and the table is flagged asstrict, the presence of a “stray” record of that type located
discontiguously from its tabular group should be treated as a fatal error, and any records which fail to usereference-
numberaccess for that class of objects should be treated as a fatal error. An OASIS reader which does not rely
of the record grouping,reference-number, andbyte-offsetguarantees provided bystrict mode is not required to detect
and report any exceptions related tostrict mode.

14 END RECORD

14.1 AnEND record identifies the end of the OASIS file. TheEND record must be the last record in the file; no trai
ing bytes are permitted. It has the following format:

‘2’ [table-offsets] padding-string validation-scheme [validation-signature]

14.2 The presence of thetable-offsetsstructure is governed byoffset-flagin theSTART record (see section 13). The
padding-string (ab-string) must be sized and inserted by the OASIS writer so that the total byte length of theEND
record, including therecord-ID, is exactly 256 bytes. This makes it possible for an OASIS reader to find the EN
record (and anytable-offsets andvalidation-signature) using a relative seek from the logical end-of-file, avoiding
the need to store a forward pointer in theSTART record. The contents ofpadding-string should be initialized to
NUL characters.

14.3validation-scheme is anunsigned-integer which selects the validation scheme used, andvalidation-signature
is an optional scheme-dependent group of bytes used for validating the integrity of the OASIS file. The followin
idation schemes are defined:

Table 14-1: END Record Validation Schemes

SCHEME DESCRIPTION VALIDATION
SIGNATURE LENGTH

0 No Validation 0

1 CRC32 4

2 CHECKSUM32 4
© SEMI 2003 14 SEMI Draft Document 3626 2003/04/23

the
e-

of the

ificant
is not
ple C-

fer to

m

-
,
uld be
14.4 CRC32 Validation

14.4.1 The CRC32 polynomial is specified in ISO 3309:

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x1 + x0

With the left-most bit representing the most significant bit, this corresponds to a value of:

binary 1 0000 0100 1100 0001 0001 1101 1011 0111
hexadecimal 104c11db7

14.4.2 The CRC32 value is computed using all of the bytes in the OASIS file from the first byte of theSTART record
to theEND record’svalidation-schemeinteger. It is byte-order dependent. The resulting 32-bit word is stored in
last 4 bytes of the file, with the least significant byte first. This calculation is usually implemented using a tabl
lookup shift/XOR method. See Appendix 1 for sample C-language source code.

14.5 CHECKSUM32 Validation

14.5.1 The CHECKSUM32 validation signature is computed as a simple unsigned arithmetic summation of all
bytes in the OASIS file from the first byte of theSTART record to theEND record’svalidation-schemeinteger. This
value is then truncated to its least significant 32 bits and stored in the last 4 bytes of the file, with the least sign
byte first. It is not byte-order dependent, and this characteristic makes it somewhat easier to calculate if the file
written sequentially. It is, however, far less effective than CRC32 for detecting errors. See Appendix 1 for sam
language source code.

14.6EXCEPTIONHANDLING: OASIS processors should treat the absence of anEND record in an OASIS file as a
fatal error.

15 CELLNAME RECORD

15.1 ACELLNAME record associates the name of a cell with a unique reference number. This allowsCELL and
PLACEMENT records, if desired, to avoid redundantly storing the actual text of the cell name and instead re
the cell by its assigned reference number. It has the following format:

‘3’ cellname-string
‘4’ cellname-string reference-number

15.2cellname-string is ann-stringwhich holds the cell name. Thereference-numberis anunsigned-integerwhich
is either implicitly or explicitly assigned to the cell. Implicit assignment occurs in record type ‘3’, by assigning
sequential reference numbers beginning with 0 as each successiveCELLNAME record is encountered. Explicit
assignment occurs in record type ‘4’.

15.3 Two standard properties,S_BOUNDING_BOX andS_CELL_OFFSET (described in section A2-2 on
page 39), may be associated with eachCELLNAME record. When allCELLNAME records have been grouped into
a single contiguous table instrict mode (as described in section 13 on page 13), with anS_CELL_OFFSET property
for everyCELLNAME record, the table forms a complete index of all cells in the OASIS file, suitable for rando
access.

15.4 Record types ‘3’ and ‘4’ may not both be used in the same OASIS file.

15.5EXCEPTION HANDLING: The appearance of twoCELLNAME records in the same file with the same num
ber but different names, or twoCELLNAME records in the same file with the same name but different numbers
should be treated as a fatal error. The appearance of both record types ‘3’ and ‘4’ in the same OASIS file sho
treated as a fatal error. The presence of more than oneS_CELL_OFFSET or S_BOUNDING_BOX property after a
givenCELLNAME record should be treated as a fatal error.
SEMI Draft Document 3626 2003/04/23 15 © SEMI 2003

 refer-

ing

-
should

to the

 ‘7’,

-
,
uld be

operty
16 TEXTSTRING RECORD

16.1 ATEXTSTRING record associates a text string with a unique reference number. This allowsTEXT records, if
desired, to avoid redundantly storing the actual text of the string and instead refer to the string by its assigned
ence number. It has the following format:

‘5’ text-string
‘6’ text-string reference-number

16.2text-string is ana-string which holds the text string. Thereference-number is anunsigned-integer which is
either implicitly or explicitly assigned to the text string. Implicit assignment occurs in record type ‘5’, by assign
sequential reference numbers beginning with 0 as each successiveTEXTSTRING record is encountered. Explicit
assignment occurs in record type ‘6’.

16.3 Record types ‘5’ and ‘6’ may not both be used in the same OASIS file.

16.4EXCEPTION HANDLING: The appearance of twoTEXTSTRING records in the same file with the same
number but different names, or twoTEXTSTRING records in the same file with the same name but different num
bers, should be treated as a fatal error. The appearance of both record types ‘5’ and ‘6’ in the same OASIS file
be treated as a fatal error.

17 PROPNAME RECORD

17.1 APROPNAME record associates the name of a property with a unique reference number. This allowsPROP-
ERTY records, if desired, to avoid redundantly storing the actual text of the property name and instead refer
property name by its assigned reference number. It has the following format:

‘7’ propname-string
‘8’ propname-string reference-number

17.2propname-string is ann-string which holds the property name. Thereference-number is anunsigned-integer
which is either implicitly or explicitly assigned to the property name. Implicit assignment occurs in record type
by assigning sequential reference numbers beginning with 0 as each successivePROPNAME record is encountered.
Explicit assignment occurs in record type ‘8’.

17.3 Record types ‘7’ and ‘8’ may not both be used in the same OASIS file.

17.4EXCEPTION HANDLING: The appearance of twoPROPNAME records in the same file with the same num
ber but different names, or twoPROPNAME records in the same file with the same name but different numbers
should be treated as a fatal error. The appearance of both record types ‘7’ and ‘8’ in the same OASIS file sho
treated as a fatal error.

18 PROPSTRING RECORD

18.1 APROPSTRING record associates a property string with a unique reference number. This allowsPROPERTY
records, if desired, to avoid redundantly storing the actual text of the property string and instead refer to the pr
string by its assigned reference number. It has the following format:

‘9’ prop-string
‘10’ prop-string reference-number
© SEMI 2003 16 SEMI Draft Document 3626 2003/04/23

g

begin-
0’.

’ in the

bina-

ange of

me is
18.2prop-string is ana-string, b-string , orn-string which holds the property string, depending on the referencin
PROPERTY record. Thereference-number is anunsigned-integerwhich is either implicitly or explicitly assigned
to the property string. Implicit assignment occurs in record type ‘9’, by assigning sequential reference numbers
ning with 0 as each successivePROPSTRING record is encountered. Explicit assignment occurs in record type ‘1

18.3 Record types ‘9’ and ‘10’ may not both be used in the same OASIS file.

18.4EXCEPTION HANDLING: The appearance of twoPROPSTRING records in the same file with the same
number but different names should be treated as a fatal error. The appearance of both record types ‘9’ and ‘10
same OASIS file should be treated as a fatal error.

19 LAYERNAME RECORD

19.1 ALAYERNAME record provides a means of mapping numeric (layer,datatype) and (layer,texttype) com
tions to layer names. It has the following format:

‘11’ layername-string layer-interval datatype-interval
‘12’ layername-string textlayer-interval texttype-interval

19.2 Record type ‘11’ maps a range of (layer,datatype) numbers to a layer name, and record type ‘12’ maps a r
(textlayer,texttype) numbers to a layer name.

19.3layername-string is ann-string containing the layer name.

19.4 Each of the interval fields consists of anunsigned-integer denoting the interval type, followed by 0, 1, or 2
unsigned-integers representing the bounds of that interval as follows:

19.5LAYERNAME records may be repeated for the same layer name. The complete mapping for a layer na
formed by the union of all layer, datatype, textlayer, and texttype ranges associated with that name.

20 CELL RECORD

20.1 ACELL record introduces a cell definition. It has the following format:

‘13’ reference-number
‘14’ cellname-string

20.2 In record type ‘13’,reference-numberis anunsigned-integerreferring to aCELLNAME record where the cell
name is stored. In record type ‘14’,cellname-string stores the cell name locally. In either representation, the cell
name must be ann-string.

Table 19-1: LAYERNAME Interval Types

TYPE BOUNDS IMPLIED RANGE

0 0 to∞
1 bound-a 0 tobound-a
2 bound-a bound-a to ∞
3 bound-a bound-a
4 bound-a bound-b bound-a to bound-b
SEMI Draft Document 3626 2003/04/23 17 © SEMI 2003

t

on.

tored

e

It has
20.3 All subsequent records in the file up to the nextCELL , END, or <name>record are considered to be part of tha
cell.

20.4EXCEPTION HANDLING: Use of areference-number for which there is no correspondingCELLNAME
record within the same OASIS file should be treated as a fatal error. MultipleCELL records within a single file which
refer to the same cell name (in effect, a duplicate cell definition) should also be treated as a fatal error.

21 XYABSOLUTE & XYRELATIVE RECORDS

21.1 TheXYABSOLUTE andXYRELATIVE records control the value of modal variablexy-mode, which in turn
governs the interpretation of thex andy values found inPLACEMENT , <geometry>, andTEXT records. They con-
sist simply of arecord-ID with no additional fields:

‘15’ = XYABSOLUTE
‘16’ = XYRELATIVE

21.2 When eachCELL record is encountered, modal variablexy-mode is set toabsolute, and related modal position
variablesplacement-x, placement-y, geometry-x, geometry-y, text-x, andtext-y are set to 0. The presence of an
XYRELATIVE record forces modal variablexy-mode to relative, and the presence of anXYABSOLUTE record
forces modal variablexy-mode to absolute. This mode may be changed any number of times within a cell definiti

21.3 Inabsolute mode, explicitx andy values, when present, are used directly as the actual (x,y) coordinates.

21.4 Inrelativemode, explicitx andy values, when present, are interpreted as relative displacements from the s
position information in modal variablesplacement-x, placement-y, geometry-x, geometry-y, text-x, or text-y, depend-
ing on the record type in which they occur. In this mode, the actual x-coordinate is computed as the sum of thex value
and its corresponding modal position variable, and the actual y-coordinate is computed as the sum of they value and
its corresponding modal position variable.

21.5 In bothabsoluteandrelativemodes, when anx or y value is not explicitly present in the record, the value of th
corresponding modal position variable is used for the actual x or y coordinate. In bothabsolute andrelative modes,
the corresponding modal position variables are always updated with the actual (x,y) coordinate position.

21.6 The interpretation ofpoint-listsandrepetitionsdoes not depend onabsoluteor relativemode. Also, even when a
given element includes arepetition, the corresponding modal position variables (placement-x, placement-y, geometry-
x, geometry-y, text-x, or text-y) are always updated with the actual (x,y) coordinate of the initial element.

22 PLACEMENT RECORD

22.1 APLACEMENT record describes one or more placements of the referenced cell within the current cell.
the following format:

‘17’ placement-info-byte [reference-number | cellname-string] [x] [y] [repetition]

‘18’ placement-info-byte [reference-number | cellname-string] [magnification] [angle]
[x] [y] [repetition]

22.2 In record type ‘17’,placement-info-byte contains the bit pattern ‘CNXYRAAF ’.

22.3 In record type ‘18’,placement-info-byte contains the bit pattern ‘CNXYRMAF ’.
© SEMI 2003 18 SEMI Draft Document 3626 2003/04/23

w

s:

lf)
errors.

ace-

the
s may
22.4 WhenC=1, the cell reference is explicit, in which caseN=1 means thatreference-number (anunsigned-inte-
ger) is present, and refers to aCELLNAME record where the cell name is stored;N=0 means thatcellname-string
(ann-string) is present and stores the cell name locally. WhenC=0, N is ignored, and the value of modal variable
placement-cell is used, referring to the same cell as the previousPLACEMENT record.

22.5x andy aresigned-integer coordinates representing either theabsolute or therelative (x,y) location of the place-
ment.X is 1 if x is present, andY is 1 if y is present. When eitherx or y is unspecified, the value of modal variable
placement-x or placement-y, respectively, is used instead. Refer to section 21 on page 18 for a discussion of ho
absolute andrelative modes affect the interpretation ofx andy.

22.6R is 1 if repetition is present.F=1 indicates reflection (or flip) about the x-axis;F=0 indicates no flip.

22.7 In record type ‘17’, magnification is 1.0 and rotation is a counterclockwise integral multiple of 90 degree
AA=0 for 0 degrees,AA=1 for 90 degrees,AA=2 for 180 degrees, andAA=3 for 270 degrees.

22.8 In record type ‘18’, magnification and rotation are reals;angle is dimensioned in degrees, with positive values
denoting a counterclockwise rotation;magnification is, of course, unitless.A is 1 if angle is present, otherwise the
rotation defaults to 0 degrees.M is 1 if magnification is present, otherwise the magnification defaults to 1.0.

22.9 Each successivePLACEMENT record updates all placement-related modal variables.

22.10EXCEPTION HANDLING: Use of areference-number for which there is no correspondingCELLNAME
record should be treated as a fatal error. Any recursive cell reference (a cell placing a copy of itself within itse
should be treated as a fatal error. Magnification values which are negative or zero should be treated as fatal
Floating point values ofNaNor Inf for either magnification or angle should be treated as fatal errors.PLACEMENT
records may refer toCELL records regardless of their relative location within the file, and may also refer toexternal
cells which are not defined in the same file.

23 PLACEMENT TRANSFORM REPRESENTATION

23.1 EDA applications generally define a placementtransform as a 3x3 matrix:

which transforms any point (p,q) via left-multiplication by the 1x3 row matrix [p q 1]. Conversion of OASIS pl
ment data to this form is defined as follows:

X00 = cos(angle) * magnification
X01 = sin(angle) * magnification
X10 = -f * sin(angle) * magnification
X11 = +f * cos(angle) * magnification
X20 = x
X21 = y

where f=1 ifF=0, f=-1 if F=1, “angle” is the rotation angle given by eitherAA or anglein thePLACEMENT record,
and “magnification” ismagnification if specified, else 1.0. Note that if the rotation is a multiple of 90 degrees and
magnification is 1.0, then the upper 2x2 sub-matrix takes one of the following eight forms and OASIS processor
optimize accordingly:

T
X00 X01 0
X10 X11 0
X20 X21 1

=

SEMI Draft Document 3626 2003/04/23 19 © SEMI 2003

s-

It has
23.2 Whenrepetition is present, the above transform is that of thefirst element of the repetition. In general, the tran
form of any elementE of the repetition is computed by right-multiplying the transform of the first element by the
matrix:

to yield:

(Refer to section 7.6.3 and subsequent paragraphs beginning on page 8 for a discussion of howx-offset andy-offset
are determined for the variousrepetition types.)

24 TEXT RECORD

24.1 ATEXT record represents a text element, consisting of an (x,y) coordinate point and an annotation string.
the following format:

‘19’ text-info-byte [reference-number | text-string] [textlayer-number] [texttype-number]
[x] [y] [repetition]

24.2 Thetext-info-byte contains the bit pattern ‘0CNXYRTL ’.

24.3 WhenC=1, the text reference is explicit, in which caseN=1 means thatreference-number (anunsigned-inte-
ger) is present, and refers to aTEXTSTRING record where the text string is stored;N=0 means thattext-string (an
a-string) is present and stores the text string locally. WhenC=0, N is ignored, and the value of modal variabletext-
string is used instead.

24.4x andy aresigned-integer coordinates representing either theabsolute or therelative (x,y) location of the text
element.X is 1 if x is present, andY is 1 if y is present. When eitherx or y is unspecified, the value of modal variable
text-xor text-y, respectively, is used instead. Refer to section 21 on page 18 for a discussion of howabsoluteandrela-
tive modes affect the interpretation ofx andy.

Table 23-1: Standard Placement Values

F angle X00 X01 X10 X11

0 0˚ +1 0 0 +1

1 0˚ +1 0 0 -1

0 90˚ 0 +1 -1 0

1 90˚ 0 +1 +1 0

0 180˚ -1 0 0 -1

1 180˚ -1 0 0 +1

0 270˚ 0 -1 +1 0

1 270˚ 0 -1 -1 0

S
1 0 0
0 1 0

x-offset y-offset1

=

X00 X01 0
X10 X11 0

X20 x-offset+() X21 y-offset+() 1
© SEMI 2003 20 SEMI Draft Document 3626 2003/04/23

as the

f

cus-

e

us-
24.5R is 1 if repetition is present.L is 1 if textlayer-number is present.T is 1 if texttype-number is present. Both
textlayer-number andtexttype-number areunsigned-integers. Whentextlayer-number and/ortexttype-number
are unspecified, they assume the value of modal variablestextlayer andtexttype, respectively.

24.6 Each successiveTEXT record updates all text-related modal variables.

24.7EXCEPTION HANDLING: Use of areference-number for which there is no correspondingTEXTSTRING
record within the same OASIS file should be treated as a fatal error. Implicit use of modal variablestextlayeror text-
typewhen they are in the undefined state should be treated as a fatal error.

25 RECTANGLE RECORD

25.1 ARECTANGLE record represents a rectangular figure whose edges are parallel to the x- and y-axes. It h
following format:

‘20’ rectangle-info-byte [layer-number] [datatype-number] [width] [height] [x] [y] [repetition]

25.2 Therectangle-info-byte contains the bit pattern ‘SWHXYRDL ’.

25.3R is 1 if repetition is present.L is 1 if layer-number is present.D is 1 if datatype-number is present. Both
layer-number anddatatype-numberareunsigned-integers. Whenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variableslayeranddatatype, respectively.W is 1 if width is present.H
is 1 if height is present. Bothwidth andheight areunsigned-integers. Whenwidth and/orheight are unspecified,
they assume the value of modal variablesgeometry-w andgeometry-h, respectively.

25.4S is 1 if the rectangle is a square. In this case,H mustbe 0, andwidth , if present, is used for both dimensions o
the rectangle. Whenwidth is unspecified, the value of modal variablegeometry-w is used instead.

25.5x andy aresigned-integercoordinates representing either theabsoluteor therelative(x,y) location of the lower-
left corner of the rectangle.X is 1 if x is present, andY is 1 if y is present. When eitherx or y is unspecified, the value
of modal variablegeometry-xor geometry-y, respectively, is used instead. Refer to section 21 on page 18 for a dis
sion of howabsolute andrelative modes affect the interpretation ofx andy.

25.6 Each successiveRECTANGLE record updates all rectangle-related modal variables. (WhenS=1, bothgeome-
try-w andgeometry-h are set to the rectangle’s width.)

25.7EXCEPTION HANDLING: Implicit use of modal variablesgeometry-w, geometry-h, layer,or datatypewhen
they are in the undefined state should be treated as a fatal error. WhenS=1,H=1 should be treated as a fatal error. Th
interpretation of zero-areaRECTANGLE s is application-dependent.

26 POLYGON RECORD

26.1 APOLYGON record represents an arbitrary polygon figure. It has the following format:

‘21’ polygon-info-byte [layer-number] [datatype-number] [point-list] [x] [y] [repetition]

26.2 Thepolygon-info-byte contains the bit pattern ‘00PXYRDL’.

26.3x andy aresigned-integercoordinates representing either theabsoluteor therelative(x,y) location of the initial
vertex of the polygon.X is 1 if x is present, andY is 1 if y is present. When eitherx or y is unspecified, the value of
modal variablegeometry-x or geometry-y, respectively, is used instead. Refer to section 21 on page 18 for a disc
sion of howabsolute andrelative modes affect the interpretation ofx andy.
SEMI Draft Document 3626 2003/04/23 21 © SEMI 2003

licit
as
egions

h. It

r a

dal
g the

the path
26.4R is 1 if repetition is present.L is 1 if layer-number is present.D is 1 if datatype-number is present. Both
layer-number anddatatype-numberareunsigned-integers. Whenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variableslayer anddatatype, respectively.

26.5P is 1 if point-list is present. Otherwise, the value of modal variablepolygon-point-list is used. The format of
point-lists is defined in section 7.7 on page 9.

26.6 Each successivePOLYGON record updates all polygon-related modal variables.

26.7EXCEPTION HANDLING: Polygons with fewer than three vertices should be treated as fatal errors. Imp
use of modal variablespolygon-point-list, layer,or datatypewhen they are in the undefined state should be treated
a fatal error. The interpretation of self-intersecting polygons, reentrant polygons, and polygons with zero-area r
is application-dependent.

27 PATH RECORD

27.1 APATH record represents an arbitrary path figure, which may be thought of as a polyline with finite widt
has the following format:

‘22’ path-info-byte [layer-number] [datatype-number] [half-width]
[extension-scheme [start-extension] [end-extension]] [point-list] [x] [y] [repetition]

27.2 Thepath-info-byte contains the bit pattern ‘EWPXYRDL ’.

27.3x andy aresigned-integercoordinates representing either theabsoluteor therelative(x,y) location of the initial
vertex of the path centerline.X is 1 if x is present, andY is 1 if y is present. When eitherx or y is unspecified, the
value of modal variablegeometry-x or geometry-y, respectively, is used instead. Refer to section 21 on page 18 fo
discussion of howabsolute andrelative modes affect the interpretation ofx andy.

27.4R is 1 if repetition is present.L is 1 if layer-number is present.D is 1 if datatype-number is present. Both
layer-number anddatatype-numberareunsigned-integers. Whenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variableslayer anddatatype, respectively.

27.5P is 1 if point-list is present. Otherwise, the value of modal variablepath-point-listis used. The format ofpoint-
lists is defined in section 7.7 on page 9.

27.6W is 1 if half-width (anunsigned-integer) is present; if absent, the half-width value assumes the value of mo
variablepath-halfwidth. The path is formed by expanding the centerline (represented by line segments connectin
points) by the half-width value to each side.

27.7E is 1 if extension-scheme is present. Otherwise,extension-scheme, start-extension, andend-extension are
absent, and the values of modal variablespath-start-extension, andpath-end-extension are used instead.

27.8 When present,extension-scheme (anunsigned-integer) contains bit pattern ‘0000SSEE’. TheSS bits govern
the path starting extension, and theEE bits govern the path ending extension. Bothstart-extension (present only
whenSS=‘11’) andend-extension (present only whenEE=‘11’) aresigned-integers, as in GDSII Stream, with posi-
tive values causing the path to extend beyond its starting and/or ending vertices, and negative values causing
to retract from its starting and/or ending vertices.
© SEMI 2003 22 SEMI Draft Document 3626 2003/04/23

 is nega-
depen-
.

r.

osite

d-

1

27.9 Each successivePATH record updates all path-related modal variables.

27.10 Various types of degenerate paths, where the half-width=0, the path traces back on itself, an extension
tive with magnitude greater than its segment length, etc. are not prohibited; their interpretation is application-
dent. The path expansion scheme used at the path’s interior vertices or “joints” is also application-dependent

27.11EXCEPTION HANDLING: Implicit use of modal variablespath-halfwidth, path-point-list, path-start-exten-
sion, path-end-extension, layer,or datatypewhen they are in the undefined state should be treated as a fatal erro

28 TRAPEZOID RECORD

28.1 ATRAPEZOID record represents a trapezoid figure (a polygon with four vertices having at least two opp
sides parallel and parallel to either the x- or the y-axis). It has the following format:

‘23’ trap-info-byte [layer-number] [datatype-number]
[width] [height] delta-a delta-b [x] [y] [repetition]

‘24’ trap-info-byte [layer-number] [datatype-number]
[width] [height] delta-a [x] [y] [repetition]

‘25’ trap-info-byte [layer-number] [datatype-number]
[width] [height] delta-b [x] [y] [repetition]

28.2 Thetrap-info-byte contains bit pattern ‘OWHXYRDL ’.

28.3R is 1 if repetition is present.L is 1 if layer-number is present.D is 1 if datatype-number is present. Both
layer-number anddatatype-numberareunsigned-integers. Whenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variableslayeranddatatype, respectively.W is 1 if width is present.H
is 1 if height is present.Width andheight areunsigned-integerswhich describe the overall dimensions of the boun
ing box of the trapezoid as shown in Figure 28-1 on page 24. Whenwidth and/orheight are unspecified, they
assume the value of modal variablesgeometry-w andgeometry-h, respectively.

28.4x andy aresigned-integercoordinates representing either theabsoluteor therelative(x,y) location of the lower-
left corner of the trapezoid’s bounding box.X is 1 if x is present, andY is 1 if y is present. When eitherx or y is
unspecified, the value of modal variablegeometry-x or geometry-y, respectively, is used instead. Refer to section 2
on page 18 for a discussion of howabsolute andrelative modes affect the interpretation ofx andy.

Table 27-1: Path Extension Schemes

SS BITS DESCRIPTION

00 Usepath-start-extension modal variable

01 Use flush (zero-length) extension at starting vertex

10 Use path-halfwidth extension at starting vertex

11 Use explicitstart-extension at starting vertex

EE BITS

00 Usepath-end-extension modal variable

01 Use flush (zero-length) extension at ending vertex

10 Use path-halfwidth extension at ending vertex

11 Use explicitend-extension at ending vertex
SEMI Draft Document 3626 2003/04/23 23 © SEMI 2003

this

ase,

S to
ox,

lication-

 paral-
as the

f

28.5delta-aanddelta-b are1-deltas, and are both present in record type ‘23’. In record type ‘24’delta-b is assumed
to be 0 and is omitted, and in record type ‘25’delta-a is assumed to be 0 and is omitted.

28.6O is 0 if the trapezoid is horizontally-oriented, with top (PQ) and bottom (RS) sides parallel to the x-axis. In
case,delta-a represents (xP - xR) anddelta-b represents (xQ - xS).

28.7O is 1 if the trapezoid is vertically-oriented, with left (PQ) and right (RS) sides parallel to the y-axis. In this c
delta-a represents (yP - yR) anddelta-b represents (yQ - yS).

28.8 Each successiveTRAPEZOID record updates all trapezoid-related modal variables.

Figure 28-1
Horizontal and Vertical Trapezoids

28.9EXCEPTION HANDLING: For any trapezoid, deltas of sufficient magnitude to cause segments PR and Q
cross, as well as any delta which causes either segment PR or QS not to fit diagonally within the bounding b
should be treated as fatal errors. Implicit use of modal variablesgeometry-w, geometry-h, layer,or datatypewhen they
are in the undefined state should be treated as a fatal error. The interpretation of zero-area trapezoids is app
dependent.

29 CTRAPEZOID RECORD

29.1 ACTRAPEZOID record represents a trapezoid figure in a compact form by assuming that two sides are
lel to either the x- or the y-axis, and the remaining two sides form either a 45- or 90-degree angle with them. It h
following format:

‘26’ ctrapezoid-info-byte [layer-number] [datatype-number]
[ctrapezoid-type] [width] [height] [x] [y] [repetition]

29.2 Thectrapezoid-info-byte contains the bit pattern ‘TWHXYRDL ’.

29.3R is 1 if repetition is present.L is 1 if layer-number is present.D is 1 if datatype-number is present. Both
layer-number anddatatype-numberareunsigned-integers. Whenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variableslayeranddatatype, respectively.W is 1 if width is present.H
is 1 if height is present. Bothwidth andheight areunsigned-integers, and represent the width (w) and height (h) o
the trapezoid’s bounding box, respectively. Whenwidth and/orheight are unspecified, they assume the value of
modal variablesgeometry-w andgeometry-h, respectively.

29.4x andy aresigned-integercoordinates representing either theabsoluteor therelative(x,y) location of the lower-
left corner of the trapezoid’s bounding box.X is 1 if x is present, andY is 1 if y is present. When eitherx or y is

w

w

(x,y)

(x,y)

hh

P Q

R S

Q

R

S

Pdelta-a delta-b

de
lta

-a
de

lta
-b
© SEMI 2003 24 SEMI Draft Document 3626 2003/04/23

1

 mask

h)
(h < 2w)
r

oids is
unspecified, the value of modal variablegeometry-x or geometry-y, respectively, is used instead. Refer to section 2
on page 18 for a discussion of howabsolute andrelative modes affect the interpretation ofx andy.

29.5T is 1 if ctrapezoid-type (anunsigned-integer) is present; otherwise it assumes the value of modal variable
ctrapezoid-type. Types 0-25 are depicted in figure 29-1:

Figure 29-1
The 26 Standard CTRAPEZOID Types

29.6 The triangle, rectangle, and square forms are provided for compactness and for compatibility with some
writing pattern file formats. For types 16-19, 22-23, and 25,height is not used, andH must be 0. For types 20-21,
width is not used andW must be 0.

29.7 Each successiveCTRAPEZOID record updates all ctrapezoid-related modal variables with the following
exception: for the forms where only one ofwidth or height is used (types 16-23 and 25), modal variablesgeometry-
w or geometry-h are both updated to match the specified dimension.

29.8EXCEPTION HANDLING: For types 0-3, (w < h) should be treated as a fatal error. For types 4-7, (w < 2
should be treated as a fatal error. For types 8-11, (h < w) should be treated as a fatal error. For types 12-15,
should be treated as a fatal error. For types 16-19, 22-23, and 25, anH value of 1 should be treated as a fatal error. Fo
types 20-21, aW value of 1 should be treated as a fatal error. A value ofctrapezoid-type greater than 25 should be
treated as a fatal error. Implicit use of modal variablesctrapezoid-type, geometry-w, geometry-h, layeror datatype
when they are in the undefined state should be treated as a fatal error. The interpretation of zero-area trapez
application-dependent.

w

w w

w

h

h

h

h

0 2

1 3

(x,y)

(x,y) (x,y)

(x,y)

(x,y)

(x,y) (x,y)

(x,y)

(x,y)(x,y) (x,y) (x,y)

(x,y)(x,y)(x,y) (x,y)

h

h

h

h

hh

hhhh

h
w

w

w

ww w w

ww

ww

8 9

10 11

151412 13

6

75

4

(x,y)
w

16

(x,y)
w

18

(x,y)

w

17
(x,y)

w

19

(x,y)

20
h

(x,y)

21
h

(x,y)

22

w
(x,y)

23

w

(x,y)
w

25w

(x,y)
w

24h

w w

w w

2h

2h

2w 2w
SEMI Draft Document 3626 2003/04/23 25 © SEMI 2003

ptive
d with
30 CIRCLE RECORD

30.1 ACIRCLE record represents a circular figure. It has the following format:

‘27’ circle-info-byte [layer-number] [datatype-number] [radius] [x] [y] [repetition]

30.2 Thecircle-info-byte contains the bit pattern ‘00rXYRDL ’.

30.3R is 1 if repetition is present.L is 1 if layer-number is present.D is 1 if datatype-number is present. Both
layer-number anddatatype-numberareunsigned-integers. Whenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variableslayer anddatatype, respectively.

30.4x andy aresigned-integercoordinates representing either theabsoluteor therelative(x,y) location of the circle’s
center.X is 1 if x is present, andY is 1 if y is present. When eitherx or y is unspecified, the value of modal variable
geometry-x or geometry-y, respectively, is used instead. Refer to section 21 on page 18 for a discussion of howabso-
lute andrelative modes affect the interpretation ofx andy.

30.4.1r is 1 if radius is present, otherwiseradius assumes the value of modal variablecircle-radius instead.

30.5 Each successiveCIRCLE record updates all circle-related modal variables.

30.6EXCEPTION HANDLING: Implicit use of modal variablescircle-radius, layer,or datatypewhen they are in
the undefined state should be treated as a fatal error. The interpretation of zero-areaCIRCLE s is application-depen-
dent.

31 PROPERTY RECORD

31.1 Aproperty is an annotation element consisting of a name plus an optional list of values, supplying descri
information about the characteristics of the OASIS file or one of its components. A property may be associate
the entire OASIS file, a<name> record, aCELL , aPLACEMENT , or an<element> record within a cell. The
PROPERTY record has the following format:

‘28’ prop-info-byte [reference-number | propname-string] [prop-value-count] [<property-value>*]
‘29’

31.2 Record type ‘29’ provides a compact way to specify a duplicate copy of the most-recently-seen property
together with its value list. It makes use of modal variableslast-property-name andlast-value-list, which were
defined by a previousPROPERTY record.

31.3 Theprop-info-byte contains the bit pattern ‘UUUUVCNS’.

31.4 WhenC=1, the property name reference is explicit, in which caseN=1 means thatreference-number (an
unsigned-integer) is present, and refers to aPROPNAME record where the property name is stored;N=0 means that
propname-string (ann-string) is present and stores the property name locally. WhenC=0, N is ignored, and the
value of modal variablelast-property-nameis used instead.

31.5 WhenV=0, values ofUUUU from 0 to 14 indicate the number of<property-value> fields which are part of this
record, andprop-value-count is omitted. WhenV=0 andUUUU=15,prop-value-count, anunsigned-integer, is
present and indicates the number of<property-value> fields. WhenV=1,UUUU must be 0, and modal variablelast-
value-list supplies the value list. See section 7.8 on page 11 for a description of<property-value> types.
© SEMI 2003 26 SEMI Draft Document 3626 2003/04/23

of
t GDSII-

s

ord

e
’ in the
31.6 WhenS=1, a standard property is indicated; whenS=0, a non-standard or user property is indicated. The list
OASIS Standard Properties appears in Appendix 2 on page 39. That appendix also describes how to represen
Stream-style properties using theS_GDS_PROPERTY standard property.

31.7 Each successivePROPERTY record updates modal variableslast-property-name andlast-value-list.

31.8 In general,PROPERTY records directly follow the record with which they are associated.PROPERTY
records occurring directly after theSTART record are associated globally with the entire OASIS file.PROPERTY
records occurring after aCELL record or its correspondingCELLNAME record pertain to that entire cell.PROP-
ERTY records occurring after aPLACEMENT record pertain to the placement(s) it describes, includingrepetitions.
PROPERTY records occurring after an<element> record pertain to that element and anyrepetitions.

31.9PROPERTY records do not associate withCBLOCK or PAD records. Instead, property association occurs a
though allCBLOCK records have been uncompressed, and allPAD records have been deleted.

31.10EXCEPTION HANDLING: Implicit use of modal variableslast-property-name or last-value-list when they
are in the undefined state should be treated as a fatal error. Use of areference-number for which there is no corre-
spondingPROPNAME record should be treated as a fatal error.

32 XNAME RECORD

32.1 AnXNAME record allows backward-compatible extension of OASIS<name> records. It associates a string
with a unique reference number. It has the following format:

‘30’ xname-attribute xname-string
‘31’ xname-attribute xname-string reference-number

32.2xname-string is user-defined as ana-string, b-string, orn-string which holds the name.xname-attribute is an
unsigned-integer providing the ability to associate theXNAME with a user-defined class. Thereference-number is
anunsigned-integerwhich is either implicitly or explicitly assigned to the name. Implicit assignment occurs in rec
type ‘30’, by assigning sequential reference numbers beginning with 0 as each successiveXNAME record is encoun-
tered. Explicit assignment occurs in record type ‘31’.

32.3 Record types ‘30’ and ‘31’ may not both be used in the same OASIS file.

32.4EXCEPTION HANDLING: The appearance of twoXNAME records in the same file with the same referenc
number but different names should be treated as a fatal error. The appearance of both record types ‘30’ and ‘31
same OASIS file should be treated as a fatal error.

33 XELEMENT RECORD

33.1 AnXELEMENT record allows backward-compatible extension of OASIS<element> records. It has the fol-
lowing format:

‘32’ xelement-attribute xelement-string

33.2xelement-attribute is anunsigned-integer providing the ability to associate theXELEMENT with a user-
defined class.xelement-string is ab-string containing user-defined data.
SEMI Draft Document 3626 2003/04/23 27 © SEMI 2003

IS file

n 1.3,

um

IB ver-
 is
ses of
 use.

m-
mpliant.
ion
34 XGEOMETRY RECORD

34.1 AnXGEOMETRY record allows backward-compatible extension of OASIS<geometry> records. It has the
following format:

‘33’ xgeometry-info-byte xgeometry-attribute
[layer-number] [datatype-number] xgeometry-string [x] [y] [repetition]

34.2 Thexgeometry-info-byte contains the bit pattern ‘000XYRDL’.

34.3R is 1 if repetition is present.L is 1 if layer-number is present.D is 1 if datatype-number is present. Both
layer-number anddatatype-numberareunsigned-integers. Whenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variableslayer anddatatype, respectively.

34.4x andy aresigned-integercoordinates representing either theabsoluteor therelative(x,y) location of the geom-
etry.X is 1 if x is present, andY is 1 if y is present. When eitherx or y is unspecified, the value of modal variable
geometry-x or geometry-y, respectively, is used instead. Refer to section 21 on page 18 for a discussion of howabso-
lute andrelative modes affect the interpretation ofx andy.

34.5xgeometry-attribute is an integer providing the ability to associate theXGEOMETRY with a user-defined
class.xgeometry-string is ab-string containing user-defined data describing the geometry.

34.6 Each successiveXGEOMETRY record updates allXGEOMETRY -related modal variables.

34.7EXCEPTION HANDLING: Implicit use of modal variableslayer,or datatypewhen they are in the undefined
state should be treated as a fatal error.

35 CBLOCK RECORD

35.1 ACBLOCK record provides a mechanism for embedding compressed data within the structure of an OAS
for additional compactness. It has the following format:

‘34’ comp-type uncomp-byte-count comp-byte-count comp-bytes

35.2comp-type is anunsigned-integerdescribing the type of compression used for this record.uncomp-byte-count
is anunsigned-integer describing the number of bytes prior to compression, andcomp-byte-count is anunsigned-
integerdescribing the number of bytes after compression.comp-bytes is a sequence of bytes containing the com-
pressed byte sequence.

35.3 Whencomp-type=0, the compression scheme is the lossless DEFLATE Compressed Data Format, Versio
as documented in RFC 1951 (1996). Other values ofcomp-type are reserved for future versions of the OASIS for-
mat; the intent is to be able to support a mixture of compression methods within a single OASIS file for maxim
compactness.

35.3.1 One example of compression/decompression software that is compliant with RFC 1951 is found in ZL
sion 1.1.4 (March 2002). This software version can be used without any licensing or legal encumbrances. It
expected that future versions of the ZLIB software will also remain RFC-1951-compliant. Users of future relea
ZLIB are cautioned to check for continued conformance to RFC 1951 as well as any changes in the terms of

35.3.2 Use of the ZLIB software isnot mandatory in order to be compliant with the OASIS specification. Any co
pression/decompression software that stores and processes data in conformance with RFC 1951 is OASIS-co
It should be noted that alternatives to theCBLOCK record may emerge in the future, supporting other compress
mechanisms. Use of multiple compression methods within a single OASIS file is not ruled out.
© SEMI 2003 28 SEMI Draft Document 3626 2003/04/23

is

r

35.4 TheSTART, END, CELL , and nestedCBLOCK records may not be stored within a compressed record. Th
maintains the ability to perform random access at the cell level within an OASIS file. ACBLOCK record may not
encapsulate more than one “strict mode” name table (refer to sections 13 and 14 beginning on page 13). All othe
sequences of records, of any length, may be stored in aCBLOCK record.

35.5EXCEPTION HANDLING: During the reading of aCBLOCK record, it is a fatal error if the number of bytes
returned after decompression does not matchuncomp-byte-count.
SEMI Draft Document 3626 2003/04/23 29 © SEMI 2003

ollow-

es
36 DETAILED BNF SYNTAX

36.1 This specification uses a modified Backus-Naur Form (BNF) notation to describe OASIS file syntax. The f
ing table summarizes the conventions used in the modified BNF:

36.2 The OASIS syntax is detailed as follows:

<oasis-file> -> <magic-bytes>START { CBLOCK | PAD | PROPERTY | <cell> | <name> }*END
<name> -> {CELLNAME | TEXTSTRING | LAYERNAME | PROPNAME | PROPSTRING | XNAME }
<cell> -> { CELL { CBLOCK | PAD | PROPERTY | XYRELATIVE | XYABSOLUTE | <element> }* }
<element> -> { <geometry> |PLACEMENT | TEXT | XELEMENT }
<geometry> -> {RECTANGLE | POLYGON | PATH | TRAPEZOID | CTRAPEZOID | CIRCLE | XGEOMETRY }

<magic-bytes> -> “%SEMI-OASIS<CR><NL>”

PAD -> ‘0’

START -> ‘1’ <version-string> <unit> <offset-flag> [<table-offsets>]

END -> ‘2’ [<table-offsets>] <padding-string> <validation-scheme> [<validation-signature>]

CELLNAME -> ‘3’ <cellname-string>
CELLNAME -> ‘4’ <cellname-string> <reference-number>

TEXTSTRING -> ‘5’ <text-string>
TEXTSTRING -> ‘6’ <text-string> <reference-number>

PROPNAME -> ‘7’ <propname-string>
PROPNAME -> ‘8’ <propname-string> <reference-number>

PROPSTRING -> ‘9’ <prop-string>
PROPSTRING -> ‘10’ <prop-string> <reference-number>

LAYERNAME -> ‘11’ <layername-string> <layer-interval> <datatype-interval>
LAYERNAME -> ‘12’ <layername-string> <textlayer-interval> <texttype-interval>

CELL -> ‘13’ <reference-number>
CELL -> ‘14’ <cellname-string>

Table 36-1: Modified BNF Notation

SYMBOL TERM MEANING

ABCD Bold Uppercase Denotes an OASIS record name

abcd Bold Lowercase Denotes a fundamental data type defined in section 7

< > Angle Brackets Enclose an element name which is further defined elsewhere in the BNF

-> Arrow Means “is composed of”

[] Square BracketsEnclose element(s) which are optional, and if present, occur only once

{ } Braces Enclose element(s) which are required

| Vertical Bar Indicates a choice between mutually exclusive elements within { } braces

* Asterisk An asterisk following an element means the element may occur zero or more tim

... Ellipsis Appears between elements to indicate a variable-length list of like type

‘ ’ Single Quotes Enclose a decimal number denoting an OASISunsigned-integer

“ ” Double Quotes Enclose a literal character string

“<CR>” Control CharacterAngle brackets enclose the name of an ASCII Control Character within a string

// Double Virgule Indicates all characters to its right are comments—not part of the syntax
© SEMI 2003 30 SEMI Draft Document 3626 2003/04/23

]

]

XYABSOLUTE -> ‘15’
XYRELATIVE -> ‘16’

PLACEMENT -> ‘17’ <placement-info-byte> [<reference-number> | <cellname-string>]
 [<x>] [<y>] [<repetition>]
PLACEMENT -> ‘18’ <placement-info-byte> [<reference-number> | cellname-string>]
 [<magnification>] [<angle>] [<x>] [<y>] [<repetition>]

TEXT -> ‘19’ <text-info-byte> [<reference-number> | <text-string>] <l-t> [<x>] [<y>] [<repetition>]

RECTANGLE -> ‘20’ <rectangle-info-byte> <l-d> [<width>] [<height>] [<x>] [<y>] [<repetition>]

POLYGON -> ‘21’ <polygon-info-byte> <l-d> [<point-list>] [<x>] [<y>] [<repetition>]

PATH -> ‘22’ <path-info-byte> <l-d> [<half-width>]
 [<extension-scheme> [<start-extension>] [<end-extension>]]
 [<point-list>] [<x>] [<y>] [<repetition>]

TRAPEZOID -> ‘23’ <trap-info-byte> <l-d> [<width>] [<height>] <delta-a> <delta-b>
 [<x>] [<y>] [<repetition>]
TRAPEZOID -> ‘24’ <trap-info-byte> <l-d> [<width>] [<height>] <delta-a>
 [<x>] [<y>] [<repetition>]
TRAPEZOID -> ‘25’ <trap-info-byte> <l-d> [<width>] [<height>] <delta-b>
 [<x>] [<y>] [<repetition>]

CTRAPEZOID -> ‘26’ <ctrapezoid-info-byte> <l-d> [<ctrapezoid-type>] [<width>] [<height>] [<x>] [<y>
 [<repetition>]

CIRCLE -> ‘27’ <circle-info-byte> <l-d> [<radius>] [<x>] [<y>] [<repetition>]

PROPERTY -> ‘28’ <prop-info-byte> [<reference-number> | <propname-string>]
 [<prop-value-count>] [<property-value>*]
PROPERTY -> ‘29’

XNAME -> ‘30’ <xname-attribute> <xname-string>
XNAME -> ‘31’ <xname-attribute> <xname-string> <reference-number>

XELEMENT -> ‘32’ <xelement-attribute> <xelement-string>

XGEOMETRY -> ‘33’ <xgeometry-info-byte> <xgeometry-attribute> <l-d> <xgeometry-string> [<x>] [<y>
 [<repetition>]

CBLOCK -> ‘34’ <comp-type> <uncomp-byte-count> <comp-byte-count> <comp-bytes>
SEMI Draft Document 3626 2003/04/23 31 © SEMI 2003

<table-offsets> -> <cellname-flag> <cellname-offset>
<textstring-flag> <textstring-offset>
<propname-flag> <propname-offset>
<propstring-flag> <propstring-offset>
<layername-flag> <layername-offset>
<xname-flag> <xname-offset>

<offset-flag>, <cellname-flag>, <cellname-offset>, <textstring-flag>, <textstring-offset>,
<propname-flag>, <propname-offset>, <propstring-flag>, <propstring-offset>,
<layername-flag>, <layername-offset>, <xname-flag>, <xname-offset> ->unsigned-integer

<padding-string> ->b-string

<validation-scheme> ->unsigned-integer
<validation-signature> ->byte*

<placement-info-byte>, <text-info-byte>, <rectangle-info-byte>,
<polygon-info-byte>, <path-info-byte>, <trap-info-byte>, <ctrapezoid-info-byte>,
<circle-info-byte>, <prop-info-byte>, <xgeometry-info-byte> ->byte

<layer-interval>, <datatype-interval>, <textlayer-interval>, <texttype-interval> -> <layer-interval>
<layer-interval> -> { <li0> | <li1> | <li2> | <li3> | <li4> }
<li0> -> ‘0’
<li1> -> ‘1’ <bound-a>
<li2> -> ‘2’ <bound-a>
<li3> -> ‘3’ <bound-a>
<li4> -> ‘4’ <bound-a> <bound-b>
<bound-a>, <bound-b> ->unsigned-integer

<l-d> -> [<layer-number>] [<datatype-number>]
<l-t> -> [<textlayer-number>] [<texttype-number>]
<layer-number>, <datatype-number>, <textlayer-number>, <texttype-number> ->unsigned-integer

<reference-number> ->unsigned-integer
<cellname-string>, <propname-string>, <layername-string> -> <n-string>
<version-string>, <text-string> -> <a-string>
<prop-string>, <xname-string> -> { <a-string> | <b-string> | <n-string> }
<xelement-string>, <xgeometry-string> -> <b-string>

<a-string>, <b-string>, <n-string> -> <string-length>byte*
<string-length> ->unsigned-integer

<xname-attribute>, <xelement-attribute>, <xgeometry-attribute> -> unsigned-integer

<property-value> -> { <pvreal> | <pv8> | <pv9> | <pv10> | <pv11> | <pv12> | <pv13> | <pv14> | <pv15> }
<pvreal> -> <real>
<pv8> ->‘8’ unsigned-integer
<pv9> ->‘9’ signed-integer
<pv10> ->‘10’ <a-string>
<pv11> ->‘11’ <b-string>
<pv12> ->‘12’ <n-string>
<pv13> ->‘13’ <reference-number> // a-string
<pv14> ->‘14’ <reference-number> // b-string
<pv15> ->‘15’ <reference-number> // n-string
© SEMI 2003 32 SEMI Draft Document 3626 2003/04/23

<repetition> -> { <rep0> | <rep1> | <rep2> | <rep3> | <rep4> | < rep5> | <rep6> | <rep7> | <rep8> |
 <rep9> | <rep10> | <rep11>}
<rep0> ->‘0’
<rep1> ->‘1’ <x-dimension> <y-dimension> <x-space> <y-space>
<rep2> ->‘2’ <x-dimension> <x-space>
<rep3> ->‘3’ <y-dimension> <y-space>
<rep4> ->‘4’ <x-dimension> <x-space> ... <x-space>
<rep5> ->‘5’ <grid> <x-dimension> <x-space> ... <x-space>
<rep6> ->‘6’ <y-dimension> <y-space> ... <y-space>
<rep7> ->‘7’ <grid> <y-dimension> <y-space> ... <y-space>
<rep8> ->‘8’ <n-dimension> <m-dimension> <n-displacement> <m-displacement>
<rep9> ->‘9’ <dimension> <displacement>
<rep10> ->‘10’ <dimension> <displacement> ... <displacement>
<rep11> ->‘11’ <grid> <dimension> <displacement> ... <displacement>

<grid>, <x-dimension>, <y-dimension>, <dimension>, <n-dimension>, <m-dimension>,
<x-space>, <y-space> ->unsigned-integer

<displacement>, <n-displacement>, <m-displacement> -> <g-delta>

<point-list> -> { <pl0> | <pl1> | <pl2> | <pl3> | <pl4> | <pl5> }
<pl0> -> <vertex-count> <1-delta>* // Implicit manhattan delta point-list (horizontal-first)
<pl1> -> <vertex-count> <1-delta>* // Implicit manhattan delta point-list (vertical-first)
<pl2> -> <vertex-count> <2-delta>* // Explicit manhattan delta point-list
<pl3> -> <vertex-count> <3-delta>* // Explicit octangular delta point-list
<pl4> -> <vertex-count> <g-delta>* // Explicit all-angle delta point-list
<pl5> -> <vertex-count> <g-delta>* // Explicit all-angle double-delta point-list

<vertex-count>, <half-width>, <extension-scheme>, <ctrapezoid-type> ->unsigned-integer
<width>, <height>, <radius> ->unsigned-integer
<prop-value-count> ->unsigned-integer
<delta-a>, <delta-b> -> <1-delta>

<comp-type>, <uncomp-byte-count>, <comp-byte-count> ->unsigned-integer
<comp-bytes> ->byte*

<x>, <y> ->signed-integer
<start-extension>, <end-extension> ->signed-integer

<unit>, <angle>, <magnification> -> <real>

<1-delta> -> signed-integer // xxx...xxxd
<2-delta> -> unsigned-integer // xxx...xxdd
<3-delta> ->unsigned-integer // xxx...xddd
<g-delta> -> unsigned-integer [unsigned-integer] // xxx...xxxddd0 or xxx...xxxd1 xxx...xxxd

<real> -> { <real0> | <real1> | <real2> | <real3> | <real4> | <real5> | <real6> | <real7> }
<real0> ->‘0’ unsigned-integer // Positive whole number
<real1> ->‘1’ unsigned-integer // Negative whole number
<real2> ->‘2’ unsigned-integer // Positive reciprocal
<real3> ->‘3’ unsigned-integer // Negative reciprocal
<real4> ->‘4’ unsigned-integer unsigned-integer // Positive ratio
<real5> ->‘5’ unsigned-integer unsigned-integer // Negative ratio
<real6> ->‘6’ ieee-4 // Single-precision floating point
<real7> ->‘7’ ieee-8 // Double-precision floating point
SEMI Draft Document 3626 2003/04/23 33 © SEMI 2003

depen-
APPENDIX 1
CALCULATION OF VALIDATION SIGNATURES

A1-1 Sample CRC32 C-Language Source Code
The CRC32 must be calculated by processing the file contents as a single stream of bytes (CRC’s are order-
dent). The CRC should be initialized by calling:

 uint32 crc; /* the crc value */
 crc32_init(&crc);

As each chunk of data in written into the file, one should call :

 byte *buf; /* data written to output */
 size_t len; /* # of bytes of data written to output */

 crc32_add(&crc, buf, len);

When theEND record is to be written, the CRC should be calculated using the

<id-value> and <validation-scheme> only.

The final value of the CRC32 should then be appended to the file as a 4-byte value in little-endian order.

 #define CHG_ENDIAN32(a) { byte *p, b; \
 p = (byte *) &(a); b=p[0]; p[0]=p[3]; p[3]=b; b=p[1]; p[1]=p[2]; p[2]=b; }

 #ifdef BIG_ENDIAN_MACHINE
/* put calculated CRC in LITTLE_ENDIAN order (to align with byte ordering of the polynomial) */

 CHG_ENDIAN32(crc);
 #endif

/*
 (c) Copyright 2003 SEMI no warranty, express or implied
 not liable for damages resulting from or in connection with use of this software
*/

#include <stdio.h>
#include <errno.h>

#define TEST

/********************/
/* basic data types */
/********************/
typedef unsigned char byte;
typedef unsigned int uint32;

/*************/
/* constants */
/*************/
#define BUFFER_SZ 8 * 1024
#define BITS_IN_BYTE 8

/**********/
/* macros */
/**********/
#define CHG_ENDIAN(a) {byte *p, t; p=(byte *) &(a); t=p[0]; p[0]=p[3]; p[3]=t; t=p[1]; p[1]=p[2]; p[2]=t;}

/*
 CRC polynomial as specified in ISO 3309 and ITU-T V.42
 used in Ethernet, FDDI, cksum, etc
 polynomial is x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10
 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0

 if the leftmost bit is the msb, this is
 binary 1 0000 0100 1100 0001 0001 1101 1011 0111
 hex 1 0 4 c 1 1 d b 7
 big order bit is implicit so we have
 0x04c11db7
*/
© SEMI 2003 34 SEMI Draft Document 3626 2003/04/23

#ifdef _ILP32
define CRC32_POLY 0x04c11db7ul /* polynomial */
define CRC32_CONSTANT 0x4b90b035ul /* constant which matches polynomial above */

define LEFTMOST_BIT 0x80000000ul
define ALL_BITS 0xfffffffful
#else
define CRC32_POLY 0x04c11db7u /* polynomial */
define CRC32_CONSTANT 0x4b90b035u /* constant which matches polynomial above */

define LEFTMOST_BIT 0x80000000u
define ALL_BITS 0xffffffffu
#endif

/* initialized to zero by the compiler */
static uint32 Crc32_tbl[256];

static void
crc32_tbl_load(void)
 {
 int i;
 uint32 c;
 int j;

 /* initialize auxiliary table */
 for (i = 0; i < 256; i++)
 {
 c = i << 24;

 for (j = 0; j < BITS_IN_BYTE; j++)
 c = c & LEFTMOST_BIT ? (c << 1) ^ CRC32_POLY : (c << 1);

 Crc32_tbl[i] = c;
 }
 }

void
crc32_init(uint32 *crc)
 {
 /* initialize auxiliary table (if necessary) */
 if (!Crc32_tbl[1])
 crc32_tbl_load();

 /* preload shift register, per CRC-32 spec */
 *crc = ALL_BITS;
 }

void
crc32_add(uint32 *crc,
 byte *buf,
 size_t len
)
 {
 uint32 val;
 size_t i;

 val = *crc;
 val = ~val & ALL_BITS;

 for (i = 0; i < len; i++)
 val = (val >> 8) ^ Crc32_tbl[(val ^ buf[i]) & 0xff];

 val = ~val & ALL_BITS;
 *crc = val;
 }

main(int argc, char **argv)
 {
 char *path;
 FILE *fptr;
SEMI Draft Document 3626 2003/04/23 35 © SEMI 2003

 size_t len;
 byte buf[BUFFER_SZ];
 uint32 crc;
 uint32 crc_to_file;

 switch (argc)
 {
 case 1 :
 path = "<stdin>";
 fptr = stdin; /* read from standard input */
 break;

 case 2 :
 /* open input file (use the ’b’ flag to read as binary rather than text) */
 path = argv[1];
 if ((fptr = fopen(path, "rb")) == NULL)
 {
 fprintf(stderr, "\nerror opening %s (%s)\n", path, strerror(errno));
 exit(1);
 }
 break;

 default :
 fprintf(stderr, "\nusage: %s pathname\n", argv[0]);
 fprintf(stderr, " -or-");
 fprintf(stderr, "\n %s < pathname\n", argv[0]);
 exit(1);
 }

 /* initialize */
 crc32_init(&crc);

 /* calculate crc for all data in file */
 while (len = (fread(buf, 1, BUFFER_SZ, fptr)))
 crc32_add(&crc, buf, len);

 if (!feof(fptr))
 {
 fprintf(stderr, "\nerror reading %s (%s)\n", path, strerror(errno));
 if (fptr != stdin)
 fclose(fptr);
 exit(1);
 }

 if (fptr != stdin)
 fclose(fptr);

 crc_to_file = crc;

 /* ensure CRC32 is written to Oasis file in LITTLE_ENDIAN byte order */
#ifdef BIG_ENDIAN_MACHINE
 CHG_ENDIAN(crc_to_file);
#endif

#ifdef TEST
 /* this is the crc value that should be the last 4 bytes in the file */
 printf("crc_to_file = 0x%08x\n", crc_to_file);

 /* assume the CRC32 value crc_to_file was appended to the end of the Oasis file */
 /* add the CRC32 (in LITTLE_ENDIAN order) to the data stream and continue CRC calculation */
 crc32_add(&crc, (byte *) &crc_to_file, sizeof(crc_to_file));
#endif

 printf("crc_constant (should be 0x%08x) = 0x%08x\n", CRC32_CONSTANT, crc);

 exit(0);
 }
© SEMI 2003 36 SEMI Draft Document 3626 2003/04/23

A1-2 Sample CHECKSUM32 C-Language Source Code

/*
 (c) Copyright 2003 SEMI
 no warranty, express or implied
 not liable for damages resulting from or in connection with use of this software
*/

#include <stdio.h>
#include <errno.h>

/********************/
/* basic data types */
/********************/
typedef unsigned char byte;
typedef unsigned int uint32;

#ifdef _ILP32
typedef unsigned long long uint64;
#else
typedef unsigned long uint64;
#endif

/*************/
/* constants */
/*************/
#define BUFFER_SZ 8 * 1024
#define BITS_IN_BYTE 8

/**********/
/* macros */
/**********/
#define CHG_ENDIAN(a) {byte *p, t; p=(byte *)&(a); t=p[0]; p[0]=p[3]; p[3]=t; t=p[1]; p[1]=p[2]; p[2]=t;}

void
checksum_init(uint32 *chksum)
 {
 *chksum = 0;
 }

void
checksum_add(uint32 *chksum,
 byte *buf,
 size_t len
)
 {
 uint64 val; /* could be a uint32, but overflow handling is undefined */
 size_t i;

 val = (uint64) *chksum;

 for (i = 0; i < len; i++)
 {
 val += buf[i]; /* sum */
 val &= 0xffffffff; /* limit to 32 bits */
 }

 *chksum = (uint32) val;
 }

main(int argc, char **argv)
 {
 char *path;
 FILE *fptr;
 size_t len;
 byte buf[BUFFER_SZ];
 uint32 chksum;
 uint32 chksum_to_file;

 switch (argc)
 {
SEMI Draft Document 3626 2003/04/23 37 © SEMI 2003

 case 1 :
 path = "<stdin>";
 fptr = stdin; /* read from standard input */
 break;

 case 2 :
 /* open input file (use the ’b’ flag to read as binary rather than text) */
 path = argv[1];
 if ((fptr = fopen(path, "rb")) == NULL)
 {
 fprintf(stderr, "\nerror opening %s (%s)\n", path, strerror(errno));
 exit(1);
 }
 break;

 default :
 fprintf(stderr, "\nusage: %s pathname\n", argv[0]);
 fprintf(stderr, " -or-");
 fprintf(stderr, "\n %s < pathname\n", argv[0]);
 exit(1);
 }

 /* initialize */
 checksum_init(&chksum);

 /* calculate checksum for all data in file */
 while (len = (fread(buf, 1, BUFFER_SZ, fptr)))
 checksum_add(&chksum, buf, len);

 if (!feof(fptr))
 {
 fprintf(stderr, "\nerror reading %s (%s)\n", path, strerror(errno));
 if (fptr != stdin)
 fclose(fptr);
 exit(1);
 }

 if (fptr != stdin)
 fclose(fptr);

 chksum_to_file = chksum;

 /* ensure CHECKSUM32 is written to Oasis file in LITTLE_ENDIAN byte order */
#ifdef BIG_ENDIAN_MACHINE
 CHG_ENDIAN(chksum_to_file);
#endif

 /* this is the checksum value that should be the last 4 bytes in the file */
 printf("chksum_to_file = 0x%08x\n", chksum_to_file);

 exit(0);
 }
© SEMI 2003 38 SEMI Draft Document 3626 2003/04/23

 list con-

ists of

y

sts of

rs.

d.
 an
APPENDIX 2
OASIS Standard Properties

A2-1 File-Level Standard Properties

A2-1.1 Any file-level standard properties must appear immediately after theSTART record in an OASIS file. Use of
file-level standard properties is optional—OASIS processors may omit/ignore any or all of them.

A2-1.2S_MAX_SIGNED_INTEGER_WIDTH
This property declares the maximum number of bytes required to represent anysigned-integer in the file, after all
continuation bits have been removed and the integer has been expressed in twos-complement form. Its value
sists of a singleunsigned-integer.

A2-1.3S_MAX_UNSIGNED_INTEGER_WIDTH
This property declares the maximum number of bytes required to represent anyunsigned-integer in the file, after all
continuation bits have been removed. Its value list consists of a singleunsigned-integer.

A2-1.4S_MAX_STRING_LENGTH
This property declares the maximum number of bytes permitted in any string within the file. Its value list cons
a singleunsigned-integer.

A2-1.5S_POLYGON_MAX_VERTICES
This property declares the maximum number of vertices permitted in any polygon within the file, including an
implicit vertices, but counting the initial vertex only once. Its value list consists of a singleunsigned-integer.

A2-1.6S_PATH_MAX_VERTICES
This property declares the maximum number of vertices permitted in any path within the file. Its value list consi
a singleunsigned-integer.

A2-1.7S_TOP_CELL
This property is used to declare the name of the “top cell” of a cell hierarchy. Its value list consists of a singlen-
string. It may be repeated if more than one distinct cell hierarchy exists within the OASIS file in which it appea

A2-1.8S_BOUNDING_BOXES_AVAILABLE
This property indicates whether or not S_BOUNDING_BOX properties appear inCELLNAME records. Its value
list consists of a singleunsigned-integer. A value of 0 means that S_BOUNDING_BOX properties are not provide
A value of 1 means that at least some S_BOUNDING_BOX properties are provided. A value of 2 means that
S_BOUNDING_BOX property is provided for everyCELLNAME record.
SEMI Draft Document 3626 2003/04/23 39 © SEMI 2003

all of

e
nd

ox
ll and

ng

imes
n

A2-2 Cell-Level Standard Properties

A2-2.1 Any cell-level standard properties must appear immediately after the correspondingCELLNAME record in
an OASIS file. Use of cell-level standard properties is optional—OASIS processors may omit/ignore any or
them.

A2-2.2S_BOUNDING_BOX
This property may occur once after eachCELLNAME record, and declares the bounding box of that cell. Its valu
list consists of the following 5 fields: <flags> <lower-left-x> <lower-left-y> <width> <height>. The lower-left-x a
lower-left-y fields aresigned-integers representing the lower-left corner of the cell’s bounding box. The width and
height fields areunsigned-integers representing the width and height of the cell’s bounding box. The bounding b
should be calculated to cover the full extent of all geometric figures and text element (x,y) points within that ce
all of its subcells after a full expansion of any hierarchy beneath the cell.

The flags field is anunsigned-integer. Only the least-significant 3 bits are presently defined, and have the followi
meanings:

flags.bit.0: 0 = bounding box is known
1 = bounding box is unknown

flags.bit.1: 0 = bounding box is non-empty
1 = bounding box is empty

flags.bit.2: 0 = bounding box depends on no external cells
1 = bounding box depends on one or more external cells

A2-2.3S_CELL_OFFSET
This property may occur once after eachCELLNAME record. Its value list consists of a singleunsigned-integer
which declares the byte offset from the beginning of the file (byte 0) to where the correspondingCELL record
appears in the file. An offset value of 0 denotes anexternal cell, with no correspondingCELL record in the same
OASIS file.

A2-3 Element-Level Properties

A2-3.1S_GDS_PROPERTY
This property is intended exclusively for compatibility with GDSII Stream properties. It may occur one or more t
after any element within aCELL definition. Its value list contains exactly two values in sequence: <attribute>, a
unsigned-integer, and <propvalue-string>, ab-string. These values correspond to GDSII Stream PROPATTR and
PROPVALUE records, respectively.
© SEMI 2003 40 SEMI Draft Document 3626 2003/04/23

for any
r.

levant lit-
thout

on
s stan-
 and the

s in
NOTICE : SEMI makes no warranties or representations as to the suitability of the standards set forth herein
particular application. The determination of the suitability of the standard is solely the responsibility of the use
Users are cautioned to refer to manufacturer’s instructions, product labels, product data sheets, and other re
erature, respecting any materials or equipment mentioned herein. These standards are subject to change wi
notice.

By publication of this standard, Semiconductor Equipment and Materials International (SEMI) takes no positi
respecting the validity of any patent rights or copyrights asserted in connection with any items mentioned in thi
dard. Users of this standard are expressly advised that determination of any such patent rights or copyrights,
risk of infringement of such rights are entirely their own responsibility.

Copyright © SEMI® (Semiconductor Equipment and Materials Interna-
tional), 3081 Zanker Road, San Jose, CA 95134. Reproduction of the content
whole or in part is forbidden without express written consent of SEMI.
SEMI Draft Document 3626 2003/04/23 4
1 © SEMI 2003

	1 Purpose
	1.1 The purpose of this specification is to define an interchange and encapsulation format for hi...
	1.2 Background—In the fall of 2001, SEMI’s Data Path Task Force formed a working group to define ...

	2 Scope
	2.1 This format is designed primarily to encapsulate hierarchical mask layout for interchange bet...
	2.2 This format is designed to be both hardware- and software-independent.

	3 Limitations
	3.1 Use of extension records such as XNAME, XELEMENT, and XGEOMETRY may impair interoperability b...

	4 Referenced Standards
	4.1 IEEE Standards IEEE 754-1985 - IEEE Standard for Binary Floating- Point Arithmetic
	4.2 ISO Standards ISO-646-IRV - “US-ASCII” Character Set ISO-3309 - Information technology—Teleco...
	4.3 IETF Standards RFC 1951 - DEFLATE Compressed Data Format Specification version 1.3

	5 Terminology
	5.1 Abbreviations and Acronyms
	5.2 Definitions
	5.3 Symbols

	6 OASIS BASICS
	6.1 An OASIS file is a sequence of bytes divided into records. The length of a record is discerni...
	6.2 An OASIS file has the following overall syntax (using the modified BNF notation described in ...
	6.3 An OASIS file may represent a complete layout hierarchy, a portion of a layout hierarchy, or ...
	6.4 The <magic-bytes> element is a sequence of 13 ASCII characters: “%SEMI-OASIS<CR><NL>” where <...
	6.5 EXCEPTION HANDLING: OASIS processors should treat any deviation from the syntax presented in ...

	7 DATA CONSTRUCTS
	7.1 BYTES
	7.2 INTEGERS
	7.3 REALS
	7.4 STRINGS
	7.5 DELTAS
	7.6 REPETITIONS
	7.7 POINT LISTS
	7.8 PROPERTY VALUES

	8 CELL REFERENCING
	8.1 As in GDSII Stream, cells in OASIS are identified by name. The CELL record not only introduce...

	9 LAYERS, DATATYPES, AND TEXTTYPES
	9.1 As in GDSII Stream, every <geometry> has associated with it a layer number and a datatype num...

	10 MODAL VARIABLES
	10.1 For compaction purposes, selected data elements in many OASIS records may be implicitly spec...
	10.2 Modal variable xy-mode governs the interpretation of the x and y fields for those related re...
	10.3 EXCEPTION HANDLING: An OASIS record which implicitly references a modal variable which is in...

	11 RECORDS
	11.1 The basic unit of information in an OASIS file is a record. A record consists of a single un...
	11.2 The CBLOCK record is a special case since it encapsulates a series of ordinary records in by...
	11.3 Most records have an implicit length—the record must be parsed and decoded in order to deter...
	11.4 EXCEPTION HANDLING: OASIS processors should treat the nesting of a CBLOCK record within anot...

	12 PAD RECORD
	12.1 A PAD record provides a simple way to reserve space within an OASIS file. It has the followi...
	12.2 PAD records may be inserted between any other two records.
	12.3 EXCEPTION HANDLING: The presence of a PAD record before the START record or after the END re...

	13 START RECORD
	13.1 A START record identifies the beginning of an OASIS file, and immediately follows the <magic...
	13.2 The version-string is an a-string whose value is “1.0” for this version of the OASIS specifi...
	13.3 The unit declaration is a positive real number which specifies the global precision of the O...
	13.4 offset-flag (an unsigned-integer) is 0 when the table-offsets structure is stored in the STA...
	13.5 The table-offsets structure consists of 6pairs of unsigned-integers. Each pair consists of a...
	13.6 Each of the flag fields is either 1, indicating strict mode, or 0, indicating non-strict mod...
	13.7 In non-strict mode, records of the corresponding type may occur anywhere in the file, even i...
	13.8 In strict mode, all records of the corresponding type (plus any associated PROPERTY records)...
	13.9 When a given strict mode table has been encapsulated within one or more CBLOCK records, the ...
	13.10 EXCEPTION HANDLING: The absence of a START record as the first record in an OASIS file shou...

	14 END RECORD
	14.1 An END record identifies the end of the OASIS file. The END record must be the last record i...
	14.2 The presence of the table-offsets structure is governed by offset-flag in the START record (...
	14.3 validation-scheme is an unsigned-integer which selects the validation scheme used, and valid...
	14.4 CRC32 Validation
	14.5 CHECKSUM32 Validation
	14.6 EXCEPTION HANDLING: OASIS processors should treat the absence of an END record in an OASIS f...

	15 CELLNAME RECORD
	15.1 A CELLNAME record associates the name of a cell with a unique reference number. This allows ...
	15.2 cellname-string is an n-string which holds the cell name. The reference-number is an unsigne...
	15.3 Two standard properties, S_BOUNDING_BOX and S_CELL_OFFSET (described in section A2-2 on page...
	15.4 Record types ‘3’ and ‘4’ may not both be used in the same OASIS file.
	15.5 EXCEPTION HANDLING: The appearance of two CELLNAME records in the same file with the same nu...

	16 TEXTSTRING RECORD
	16.1 A TEXTSTRING record associates a text string with a unique reference number. This allows TEX...
	16.2 text-string is an a-string which holds the text string. The reference-number is an unsigned-...
	16.3 Record types ‘5’ and ‘6’ may not both be used in the same OASIS file.
	16.4 EXCEPTION HANDLING: The appearance of two TEXTSTRING records in the same file with the same ...

	17 PROPNAME RECORD
	17.1 A PROPNAME record associates the name of a property with a unique reference number. This all...
	17.2 propname-string is an n-string which holds the property name. The reference-number is an uns...
	17.3 Record types ‘7’ and ‘8’ may not both be used in the same OASIS file.
	17.4 EXCEPTION HANDLING: The appearance of two PROPNAME records in the same file with the same nu...

	18 PROPSTRING RECORD
	18.1 A PROPSTRING record associates a property string with a unique reference number. This allows...
	18.2 prop-string is an a-string, b-string , or n-string which holds the property string, dependin...
	18.3 Record types ‘9’ and ‘10’ may not both be used in the same OASIS file.
	18.4 EXCEPTION HANDLING: The appearance of two PROPSTRING records in the same file with the same ...

	19 LAYERNAME RECORD
	19.1 A LAYERNAME record provides a means of mapping numeric (layer,datatype) and (layer,texttype)...
	19.2 Record type ‘11’ maps a range of (layer,datatype) numbers to a layer name, and record type ‘...
	19.3 layername-string is an n-string containing the layer name.
	19.4 Each of the interval fields consists of an unsigned-integer denoting the interval type, foll...
	19.5 LAYERNAME records may be repeated for the same layer name. The complete mapping for a layer ...

	20 CELL RECORD
	20.1 A CELL record introduces a cell definition. It has the following format:
	20.2 In record type ‘13’, reference-number is an unsigned-integer referring to a CELLNAME record ...
	20.3 All subsequent records in the file up to the next CELL, END, or <name> record are considered...
	20.4 EXCEPTION HANDLING: Use of a reference-number for which there is no corresponding CELLNAME r...

	21 XYABSOLUTE & XYRELATIVE RECORDS
	21.1 The XYABSOLUTE and XYRELATIVE records control the value of modal variable xy-mode, which in ...
	21.2 When each CELL record is encountered, modal variable xy-mode is set to absolute, and related...
	21.3 In absolute mode, explicit x and y values, when present, are used directly as the actual (x,...
	21.4 In relative mode, explicit x and y values, when present, are interpreted as relative displac...
	21.5 In both absolute and relative modes, when an x or y value is not explicitly present in the r...
	21.6 The interpretation of point-lists and repetitions does not depend on absolute or relative mo...

	22 PLACEMENT RECORD
	22.1 A PLACEMENT record describes one or more placements of the referenced cell within the curren...
	22.2 In record type ‘17’, placement-info-byte contains the bit pattern ‘CNXYRAAF’.
	22.3 In record type ‘18’, placement-info-byte contains the bit pattern ‘CNXYRMAF’.
	22.4 When C=1, the cell reference is explicit, in which case N=1 means that reference-number (an ...
	22.5 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	22.6 R is 1 if repetition is present. F=1 indicates reflection (or flip) about the x-axis; F=0 in...
	22.7 In record type ‘17’, magnification is 1.0 and rotation is a counterclockwise integral multip...
	22.8 In record type ‘18’, magnification and rotation are reals; angle is dimensioned in degrees, ...
	22.9 Each successive PLACEMENT record updates all placement-related modal variables.
	22.10 EXCEPTION HANDLING: Use of a reference-number for which there is no corresponding CELLNAME ...

	23 PLACEMENT TRANSFORM REPRESENTATION
	23.1 EDA applications generally define a placement transform as a 3x3 matrix:
	23.2 When repetition is present, the above transform is that of the first element of the repetiti...

	24 TEXT RECORD
	24.1 A TEXT record represents a text element, consisting of an (x,y) coordinate point and an anno...
	24.2 The text-info-byte contains the bit pattern ‘0CNXYRTL’.
	24.3 When C=1, the text reference is explicit, in which case N=1 means that reference-number (an ...
	24.4 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	24.5 R is 1 if repetition is present. L is 1 if textlayer-number is present. T is 1 if texttype-n...
	24.6 Each successive TEXT record updates all text-related modal variables.
	24.7 EXCEPTION HANDLING: Use of a reference-number for which there is no corresponding TEXTSTRING...

	25 RECTANGLE RECORD
	25.1 A RECTANGLE record represents a rectangular figure whose edges are parallel to the x- and y-...
	25.2 The rectangle-info-byte contains the bit pattern ‘SWHXYRDL’.
	25.3 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	25.4 S is 1 if the rectangle is a square. In this case, H must be 0, and width, if present, is us...
	25.5 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	25.6 Each successive RECTANGLE record updates all rectangle-related modal variables. (When S=1, b...
	25.7 EXCEPTION HANDLING: Implicit use of modal variables geometry-w, geometry-h, layer, or dataty...

	26 POLYGON RECORD
	26.1 A POLYGON record represents an arbitrary polygon figure. It has the following format:
	26.2 The polygon-info-byte contains the bit pattern ‘00PXYRDL’.
	26.3 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	26.4 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	26.5 P is 1 if point-list is present. Otherwise, the value of modal variable polygon-point-list i...
	26.6 Each successive POLYGON record updates all polygon-related modal variables.
	26.7 EXCEPTION HANDLING: Polygons with fewer than three vertices should be treated as fatal error...

	27 PATH RECORD
	27.1 A PATH record represents an arbitrary path figure, which may be thought of as a polyline wit...
	27.2 The path-info-byte contains the bit pattern ‘EWPXYRDL’.
	27.3 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	27.4 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	27.5 P is 1 if point-list is present. Otherwise, the value of modal variable path-point-list is u...
	27.6 W is 1 if half-width (an unsigned-integer) is present; if absent, the half-width value assum...
	27.7 E is 1 if extension-scheme is present. Otherwise, extension-scheme, start-extension, and end...
	27.8 When present, extension-scheme (an unsigned-integer) contains bit pattern ‘0000SSEE’. The SS...
	27.9 Each successive PATH record updates all path-related modal variables.
	27.10 Various types of degenerate paths, where the half-width=0, the path traces back on itself, ...
	27.11 EXCEPTION HANDLING: Implicit use of modal variables path-halfwidth, path-point-list, path-s...

	28 TRAPEZOID RECORD
	28.1 A TRAPEZOID record represents a trapezoid figure (a polygon with four vertices having at lea...
	28.2 The trap-info-byte contains bit pattern ‘OWHXYRDL’.
	28.3 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	28.4 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	28.5 delta-a and delta-b are 1-deltas, and are both present in record type ‘23’. In record type ‘...
	28.6 O is 0 if the trapezoid is horizontally-oriented, with top (PQ) and bottom (RS) sides parall...
	28.7 O is 1 if the trapezoid is vertically-oriented, with left (PQ) and right (RS) sides parallel...
	28.8 Each successive TRAPEZOID record updates all trapezoid-related modal variables.
	28.9 EXCEPTION HANDLING: For any trapezoid, deltas of sufficient magnitude to cause segments PR a...

	29 CTRAPEZOID RECORD
	29.1 A CTRAPEZOID record represents a trapezoid figure in a compact form by assuming that two sid...
	29.2 The ctrapezoid-info-byte contains the bit pattern ‘TWHXYRDL’.
	29.3 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	29.4 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	29.5 T is 1 if ctrapezoid-type (an unsigned-integer) is present; otherwise it assumes the value o...
	29.6 The triangle, rectangle, and square forms are provided for compactness and for compatibility...
	29.7 Each successive CTRAPEZOID record updates all ctrapezoid-related modal variables with the fo...
	29.8 EXCEPTION HANDLING: For types 0-3, (w < h) should be treated as a fatal error. For types 4-7...

	30 CIRCLE RECORD
	30.1 A CIRCLE record represents a circular figure. It has the following format:
	30.2 The circle-info-byte contains the bit pattern ‘00rXYRDL’.
	30.3 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	30.4 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	30.5 Each successive CIRCLE record updates all circle-related modal variables.
	30.6 EXCEPTION HANDLING: Implicit use of modal variables circle-radius, layer, or datatype when t...

	31 PROPERTY RECORD
	31.1 A property is an annotation element consisting of a name plus an optional list of values, su...
	31.2 Record type ‘29’ provides a compact way to specify a duplicate copy of the most-recently-see...
	31.3 The prop-info-byte contains the bit pattern ‘UUUUVCNS’.
	31.4 When C=1, the property name reference is explicit, in which case N=1 means that reference-nu...
	31.5 When V=0, values of UUUU from 0 to 14 indicate the number of <property-value> fields which a...
	31.6 When S=1, a standard property is indicated; when S=0, a non-standard or user property is ind...
	31.7 Each successive PROPERTY record updates modal variables last-property-name and last-value-list.
	31.8 In general, PROPERTY records directly follow the record with which they are associated. PROP...
	31.9 PROPERTY records do not associate with CBLOCK or PAD records. Instead, property association ...
	31.10 EXCEPTION HANDLING: Implicit use of modal variables last-property-name or last-value-list w...

	32 XNAME RECORD
	32.1 An XNAME record allows backward-compatible extension of OASIS <name> records. It associates ...
	32.2 xname-string is user-defined as an a-string, b-string, or n-string which holds the name. xna...
	32.3 Record types ‘30’ and ‘31’ may not both be used in the same OASIS file.
	32.4 EXCEPTION HANDLING: The appearance of two XNAME records in the same file with the same refer...

	33 XELEMENT RECORD
	33.1 An XELEMENT record allows backward-compatible extension of OASIS <element> records. It has t...
	33.2 xelement-attribute is an unsigned-integer providing the ability to associate the XELEMENT wi...

	34 XGEOMETRY RECORD
	34.1 An XGEOMETRY record allows backward-compatible extension of OASIS <geometry> records. It has...
	34.2 The xgeometry-info-byte contains the bit pattern ‘000XYRDL’.
	34.3 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	34.4 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	34.5 xgeometry-attribute is an integer providing the ability to associate the XGEOMETRY with a us...
	34.6 Each successive XGEOMETRY record updates all XGEOMETRY-related modal variables.
	34.7 EXCEPTION HANDLING: Implicit use of modal variables layer, or datatype when they are in the ...

	35 CBLOCK RECORD
	35.1 A CBLOCK record provides a mechanism for embedding compressed data within the structure of a...
	35.2 comp-type is an unsigned-integer describing the type of compression used for this record. un...
	35.3 When comp-type=0, the compression scheme is the lossless DEFLATE Compressed Data Format, Ver...
	35.4 The START, END, CELL, and nested CBLOCK records may not be stored within a compressed record...
	35.5 EXCEPTION HANDLING: During the reading of a CBLOCK record, it is a fatal error if the number...

	36 DETAILED BNF SYNTAX
	36.1 This specification uses a modified Backus-Naur Form (BNF) notation to describe OASIS file sy...
	36.2 The OASIS syntax is detailed as follows:

	APPENDIX 1 CALCULATION OF VALIDATION SIGNATURES
	APPENDIX 2 OASIS Standard Properties

