/psemr

SEMI Draft Document 3626 2003/04/23
OASIS™ - Open Artwork System Interchange Standard

1 Purpose 3 Limitations

1.1 The purpose of this specification is to define an 3.1 Use of extension records such as XNAME, XELE-

interchange and encapsulation format for hierarchical MENT, and XGEOMETRY may impair interoperability

integrated circuit mask layout information. between tools. It is recommended that these extensions
be used primarily for prototyping, and that interopera-

1.2Background—In the fall of 2001, SEMI’'s Data Path bility be maintained through the formal inclusion of

Task Force formed a working group to define a succes-extensions to this specification.

sor to the venerable GDSII Stream format, which had

served the I.C. industry astke factostandard for layout

interchange for more than two decades. The old format/4 Referenced Standards

limited by 16-bit and 32-bit internal integer fields, by its

inefficient representation of cell-native geometric fig- 4.11EEE Standards

ures, and by high structural overhead, was becoming

difficult to use for leading-edge designs, and file sizes IEEE 754-1985 - IEEE Standard for Binary Floating-

were becoming unwieldy, in some cases growing to Point Arithmetic

many tens of gigabytes. The successor format was char-

tered with several overall goals: 4.21S0 Standards
» Achieve at least an order-of-magnitude file size
improvement compared to GDSII Stream. ISO-646-IRV - “US-ASCII” Character Set

* Remove all 16-bit and 32-bit integer width restric-) .
ISO-3309 - Information technology—Telecommunica-

tions—make the new format fully 64-bit capable. ; . !

Efficientl lis with | loads of f tions and information exchange between systems—
* Efficiently represent cells with large payloads of flat High-level data link control (HDLC) procedures—

native geometric figures. Frame structure

 Provide a richer information palette to facilitate inter-

change of layout-related information between desigrny 3|ETF Standardd
and manufacturing.

In the months leading up to the formation of the SEMI RFC 1951 - DEFLATE Compressed Data Format Speci-
Data Path Task Force, International Sematech sponsorefication version 1.3

a series of meetings focusing on Mask EDA issues.

Many of the Task Force participants were also involved

in these Sematech meetings, and carried forward much

useful information from those sessions into the defini-

tion of this specification.

2 Scope

2.1 This format is designed primarily to encapsulate 1. institute of Electrical and Electronics Engineers
hierarchical mask layout for interchange between sys- IEEE Operations Center, 445 Hoes Lane, P.O. Box 1331, Piscat-
tems such as EDA software, mask writing tools, and away, New Jersey 08855-1331, USA. Telephone: 732-981-0060;
mask inspection/repair tools. FAX: 732-981-1721.

Website: www.ieee.org

2.2 This format is designed to be both hardware- and 2. International Organization for Standardization
software-independent ISO Central Secretariat, 1, rue de Varembé, Case postale 56,

CH-1211 Geneva 20, Switzerland. Telephone: 41-22-749-01-11;
FAX: 41-22-733-34-30
Website: www.iso.ch

3. Internet Engineering Task Force
Website: www.ietf.org

SEMI Draft Document 3626 2003/04/23 1 © SEMI 2003

/psemr

5 Terminology

5.1 Abbreviations and Acronyms
5.1.1BNF—Backus-Naur Form
5.1.2EDA—Electronic Design Automation

5.1.3'0ASISM—Open Artwork System Interchange
Standard

5.2 Definitions

5.2.1 Most definitions of terminology specific to OASIS
are found within the text of the paragraphs that contain
them.

5.2.2Cell—a named object in a layout hierarchy, con-
taining native geometric information, annotation infor-
mation, and/or placements of other cells.

5.2.3Placement-a specification by reference that a
copy of a cell is to be placed within the coordinate space
of another cell at a particular location, orientation, and
scale. Cell placement is the fundamental mechanism
which makes hierarchy within the OASIS file possible.

5.2.4Geometry—a two-dimensional geometric figure

such as a polygon, rectangle, trapezoid, path, circle, etc.

with inherent attributes déyer anddatatype

5.2.5Property—an annotation element consisting of a
name plus an optional list of values, supplying descrip-
tive information about the characteristics of the file or
one of its components.

5.2.6Record—the principal data division in an OASIS
file.

5.2.7Text Element-an annotation element consisting of
an (x,y) coordinate point and an associated string.
5.3 Symbols

5.3.1“->" — indicates a mapping of an argument to its
contents or its meaning.

1. Used with consent by the owner.

© SEMI 2003 2

SEMI Draft Document 3626 2003/04/23

/psemr
6 OASIS BASICS

6.1 An OASIS file is a sequence bytesdivided intorecords. The length of a record is discernible from its structure
and is not explicit (in contrast to GDSII Stream, where all record lengths are explicit).

6.2 An OASIS file has the following overall syntax (using the modified BNF notation described in section 36 on
page 30). Individual record types appear in bold uppercase and are described in more detail in following sections.

<oasis-file> -> <magic-bytesSTART { CBLOCK |PAD | PROPERTY | <cell> | <name> }YEND

<name> -> {CELLNAME |TEXTSTRING |LAYERNAME |PROPNAME |PROPSTRING | XNAME }
<cell> -> { CELL { CBLOCK |PAD | PROPERTY |XYRELATIVE |XYABSOLUTE | <element> }*}
<element> -> { <geometry>HLACEMENT | TEXT | XELEMENT }

<geometry> -> {RECTANGLE |POLYGON |PATH | TRAPEZOID |CTRAPEZOID | CIRCLE | XGEOMETRY }

6.3 An OASIS file may represent a complete layout hierarchy, a portion of a layout hierarchy, or multiple layout hier-
archies. These interpretations are not intrinsic to the format and are governed by application semantics only. Each
OASIS file must be syntactically complete—it must begin with <magic-bytes> and contain at3¢A®Band

END record.

6.4 The <magic-bytes> element is a sequence of 13 ASCII chara@tSEMI-OASIS<CR><NL2 where
<CR><NL>represents the ASCII hexadecimal sequé&iz@®A. It is provided as a recognition signature to make
OASIS files easily identifiable to the UNI#le utility. (The intent of the carriage return and newline is to help detect
corruption by FTP programs operating in non-binary mode.)

6.5EXCEPTIONHANDLING: OASIS processors should treat any deviation from the syntax presented in this docu-
ment as a fatal error. OASIS readers are not required to implement syntax-check preprocessing in order to be consid-
ered compliant with this specification. The sequence in which exceptions are detected and reported is entirely
application-dependent. In addition, for access requests which do not require the interpretation of the entire file (such
as retrieval of a single cell or a subset of the cells within the file), this specification does not require OASIS readers to
exhaustively check the validity of the entire file.

7 DATA CONSTRUCTS

7.1 BYTES

7.1.1 A byte is a fixed-length 8-bit value. Bit patterns for bytes are shown with the least significant bit (bit 0) on the
right.

7.2 INTEGERS

7.2.1 Anunsigned-integeiis an N-byte (N > 0) integer value. The low-order byte apgaatrsn the OASIS format.

Integer byte length is variable and integers are represenbstieasontinuationsvhere the most significant bit of

each byte except the last in the chain is a 1; the remaining seven bits in each byte are concatenated to form the actual
integer value itself. There are no restrictions on integer byte length (and hence, magnitude).

Byte 0 (LSB) Byte 1 Byte n (MSB)
[c] Significand | |c] Significand |« |c] Significand |
Figure 7-1

Unsigned-Integer Representation

SEMI Draft Document 3626 2003/04/23 3 © SEMI 2003

/psemr

Table 7-1: Unsigned-Integer Examples

UNSIGNED-INTEGER VALUE BINARY REPRESENTATION
0 00000000
127 01111111
128 10000000 00000001
16,383 11111111 01111111
16,384 10000000 10000000 00000001

7.2.2 Asigned-integeffollows the same byte-continuation scheme agreigned-integerand is stored in signed-
magnitude form, with theignificandleft-shifted one bit and the sign bit stored in the least significant bit of the low-
order (first) byte. A sign bit of 0 indicates a positive number, and a sign bit of 1 indicates a negative number. Both rep-
resentations of zero (+0 and -0) should be treated as numerically equivalent for the purposes of comparison.

Byte 0 (LSB) Byte 1 Byte n (MSB)
| C | Significand | S | | C | Significand =« =« | C | Significand
Figure 7-2

Signed Integer Representation

Table 7-2: Signed Integer Examples

SIGNED INTEGER VALUE BINARY REPRESENTATION
0 00000000
+1 00000010
-1 00000011
+63 01111110
-64 10000001 00000001
+8,191 11111110 01111111
-8,192 10000001 10000000 00000001

7.2.3EXCEPTIONHANDLING: OASIS processors which only support integer data in a restricted space (e.g., 32-bit
space) should treat any magnitude outside of this space as a fatal error.

7.3 REALS

7.3.1 Areal number may be stored in one of several rational forms, or as a single-precision 4ebgtd (or double-
precision 8-bytei¢ee-§ floating point value. The rational forms are usually more compact than the floating-point
forms, and have the advantage of being able to precisely represent many values which can only be approximated by

the binary floating point representation. The type of representation is storednsigmed-integewhich precedes
the significant portion of the real:

© SEMI 2003 4 SEMI Draft Document 3626 2003/04/23

/psemr

Table 7-3: Real Number Types

FORMAT MEANING
‘0’ unsigned-integer Positive whole number
‘1’ unsigned-integer Negative whole number
‘2" unsigned-integer Positive reciprocal
‘3’ unsigned-integer Negative reciprocal
‘4’ unsigned-integer unsigned-intege Positive ratio
‘5’ unsigned-integer unsigned-intege Negative ratio
‘6’ IEEE-4-byte-float Single-precision floating point
‘7" |IEEE-8-byte-float Double-precision floating point

7.3.2 In types 0 and 1, theal is a whole number—its fractional portion is zero. In types 2 and 8ni$igned-inte-

ger represents the denominator of a reciprocal, with an implicit numerator of 1. Types 4 and 5 are ratios, with the
numerator listed first, followed by the denominator. Types 6 and 7 are binary floating point numbers in IEEE 754-
1985 format, with the least significant byte of fteetion (byte 0) storedirst.

ieee-4 float
S| Exponent | Fraction
Byte3 | Byte2 | Byte 1 | Byte 0
ieee-8 float
S Exponent Fraction
Byte7 | Byte6 | Byte5 | Byte4 | Byte3 | Byte2 | Bytel | Byte O
Figure 7-3

IEEE Floating Point Formats

Table 7-4: Real Number Examples

VALUE RATIONAL FORM IEEE-4 FORM
0.0 00000000 00000000 00000110 00000000 00000000 00000000 00000000
1.0 00000000 00000001 00000110 00000000 00000000 10000000 00111111
-0.5 00000011 00000010 00000110 00000000 00000000 00000000 10111111
0.3125 | 00000100 00000101 00010000 00000110 00000000 00000000 10100000 00111110
1/3 00000010 00000011 00000110 10101011 10101010 10101010 00111114
-2/13 00000101 00000010 00001101 00000110 11011001 10001001 00011101 10111110

7.3.3EXCEPTIONHANDLING: For types 2-5, a denominator of 0 should be treated as a fatal error. A type outside
the range of 0-7 should be treated as a fatal error.

SEMI Draft Document 3626 2003/04/23 5 © SEMI 2003

/psemr

7.4 STRINGS

7.4.1 Astring is a sequence of zero or more bytes (“characters”) precededumgigned-integerepresenting the
number of characters in the string:

string -> length byte*

Strings in OASIS are further sub-typed by semantib-gtring (“binary string”) is a string which may contain any
combination of 8-bit character codes in any sequence-gtring (“ASCII string”) may contain onlyprintable

ASCII character codes (hexadecimal 21-7E) plus the SP (space) character (hexadecimal 20), in any sequence. An
n-string (“name string”) may contain onlyrintable ASCII character codes (hexadecimal 21-7E), and must have a
length greater than zero.

7.4.2 The set gbrintable ASCII characters consists of hexadecimal character codes 21-7E. In ascending order of
character code, we have:

I"#$%&’()*+,-./0123456789:;<=>7@ [21-40]
ABCDEFGHIJKLMNOPQRSTUVWXYZN"_ [41-60]
abcdefghijkimnopgrstuvwxyz{|}~ [61-7E]

This excludes space (SP), tabs (HT, VT), and all other control characters.

7.4.3EXCEPTION HANDLING: OASIS processors should treat illegal characteassiningsor n-stringsas fatal
errors. Zero-length-stringsshould also be treated as fatal errors.

7.5 DELTAS
7.5.1 Adeltarepresents geometric data (coordinates, vectors, planar offsets, etc.).

7.5.2 Al-deltais stored as aigned-integeand represents a horizontal or vertical displacement. Bit O encodes direc-
tion: O for east or north, 1 for west or south. The remaining bits are the magnitude. Horizontal or vertical alignment is
implied by context.

7.5.3 A2-deltais stored as annsigned-integeand represents a horizontal or vertical displacement. Bits 0-1 encode
direction: 0 for east, 1 for north, 2 for west, and 3 for south. The remaining bits are the magnitude.

7.5.4 A3-deltais stored as annsigned-integeand represents a horizontal, vertical, or 45-degree diagonal displace-
ment. Bits 0-2 encode direction: 0 for east, 1 for north, 2 for west, 3 for south, 4 for northeast, 5 for northwest, 6 for
southwest, and 7 for southeast. The remaining bits are the magnitude (for horizontal and vertical deltas) or the magni-
tude of the projection onto the x- or y-axis (for 45-degree deltas).

7.5.5 Ag-deltahas two alternative forms and is stored either as a singlgned-integeor as a pair ofinsigned-

integers The first form is indicated when bit O is zero, and represents a horizontal, vertical, or 45-degree diagonal dis-
placement, with bits 1-3 encoding direction, and the remaining bits storing the magnitude, in the same fasBion as a
delta The second form represents a general (x,y) displacement and is ayvailgoed-integerBit 0 of the first

integer is 1. Bit 1 of the first integer is the x-direction (O for east, 1 for west). The remaining bits of the first integer
represent the magnitude in the x-direction. Bit O of the second integer is the y-direction (O for north, 1 for south). The
remaining bits of the second integer represent the magnitude in the y-direction. Both forms may appear gt a list of
deltas

© SEMI 2003 6 SEMI Draft Document 3626 2003/04/23

/psemr

G-DELTA
1-DELTA 2-DELTA 3-DELTA
- T T v
\ / ~
-+ — -« —
H PR / "
l l XXX...XXXDDDO (Form 1)
XXX.. XXXXD XXX...XXXDD XXX... XXXDDD or
XXX...XXXD1 XXX...XXXD (Form 2)
Figure 7-4
Delta Types
Table 7-5: Delta Examples
BIT PATTERN TYPE MEANING
11111001 00100011 1-deltgdA = -2300
11111000 00100011 1-deltd A = +2300
10011000 00101010 2-deltg Ax = +1350
10011011 00101010 2-deltgAy = -1350
11001101 00000001 3-deltd Ax = -25,Ay = +25
11010111 00000111 3-deltgAx = +122 Ay = -122
11101001 00000011 01111010 g-delte\x = +122 Ay = +61
11101100 00000101 g-dejta|Ax = -46,Ay = -46
10111011 00000001 10110111 00001111 g-deltdx = -46,Ay = -987

7.6 REPETITIONS

7.6.1 Arepetitionrepresents an “array” of cell placements, geometries, or text elements. The repetition is part of the
PLACEMENT , <geometry> or TEXT record itself. A repetition consists of amsigned-integewhich encodes the
type, followed by any related repetition parameters:

Table 7-6: Repetition Types

TYPE [FORMAT

0 re-use the previous repetition definition
x-dimension y-dimension x-space y-space
x-dimension x-space
y-dimension y-space
x-dimension x-space... X-spacg,
x-dimension grid x-space ... X-spacg,,
y-dimension y-space... y-space,,
y-dimension grid y-space ... y-space ,
n-dimension m-dimension n-displacement m-displacement
dimension displacement
dimension displacement... displacement
11 dimension grid displacement ... displacement

O 0O N| O O B W N|

(=Y
o

x-dimension, y-dimension, x-space y-space dimension, n-dimension m-dimension, andgrid are allunsigned-
integers displacement n-displacement andm-displacementareg-deltas

SEMI Draft Document 3626 2003/04/23 7 © SEMI 2003

/psemr

7.6.2TYPE 0 indicates that the previous repetition description, stored in modal vaeglelition is to be re-used.
(See section 10 on page 12.) No additional values are stored with this type.

7.6.3TYPE 1is an N-column (N > 1) by M-row (M > 1) matrix with uniform horizontal and vertical spacing
between the elements.dimensionis N - 2 andy-dimensionis M - 2. The k-offset, y-offse) (cumulative spacing in
the (horizontal,vertical) direction) of element (i,j) of the repetition (i=0, ..., N-1and j=0, ..., M-1) is

(i* x-spacej * y-spacg.

7.6.4TYPE 2is an N-column (N > 1) by 1-row vector with uniform horizontal spacing between the eleraents.
dimensionis N - 2. The X-offset, y-offse) (cumulative spacing in the (horizontal,vertical) direction) of element i of
the repetition (i = 0, ..., N-1) is (iX-space 0).

7.6.5TYPE 3is a 1-column by M-row (M > 1) vector with uniform vertical spacing between the elemgewulisnen-
sionis M - 2. The x-offset, y-offse) (cumulative spacing in the (horizontal,vertical) direction) of element j of the
repetition (j =0, ..., M-1) is (0, j y-spacs.

7.6.6TYPE 4 is an N-column (N > 1) by 1-row vector with (potentially) non-uniform horizontal spacing between the
elementsx-dimensionis N - 2. The X-offset, y-offset)(cumulative spacing in the (horizontal,vertical) direction) of
element i of the repetition (i = 0, ..., N-1) is§paceg + ... +x-space, 0), withx-spacg = 0.

7.6.7TYPE 5 is identical toT YPE 4, except that all offset values must be multiplieddmd during expansion of the
repetition.

7.6.8TYPE 6 is a 1-column by M-row (M > 1) vector with (potentially) non-uniform vertical spacing between the
elementsy-dimensionis M - 2. The %-offset, y-offse) (cumulative spacing in the (horizontal,vertical) direction) of
element j of the repetition (j = 0, ..., M-1)(B, y-spacg + ... +y-space), with y-spacg = 0.

7.6.9TYPE 7 is identical toT YPE 6, except that all offset values must be multiplieddmd during expansion of the
repetition.

7.6.10TYPE 8isan N (N > 1) by M (M > 1) repetition with uniform and (potentially) diagonal displacements
between the elements-dimensionis N - 2 andn-dimensionis M - 2. Definingn-displacementin terms of its
componentsix-spaceandny-space(and similarly form-displacemen}, the k-offset, y-offse) (cumulative spacing

in the (horizontal,vertical) direction) of element (i,j) of the repetition (i=0, ..., N-land j=0, ..., M-1) is

(i * nx-space+ j * mx-space i * ny-space+ j * my-spac§.

7.6.11TYPE 9is a P-element (P > 1) repetition with uniform and (potentially) diagonal displacements between the
elementsdimensionis P - 2. Defininglisplacementin terms of its componenisspaceandy-space the k-offset,

y-offse) (cumulative spacing in the (horizontal,vertical) direction) of element k of the repetition (k =0, ..., P-1) is
(k * x-space k * y-space.

7.6.12TYPE 10is a P-element (P > 1) repetition with (potentially) non-uniform and arbitrary two-dimensional dis-
placements between the elemedimensionis P - 2. Defininglisplacement in terms of its componenisspace
andy-space, the k-offset y-offse) (cumulative spacing in the (horizontal,vertical) direction) of element k of the
repetition (k = 0, ..., P-1) ix{spacg + ... +x-space, y-spaceg + ... +y-space) with x-space = y-spacg= 0).

7.6.13TYPE 11is identical toTYPE 10, except that all offset values must be multiplieddsid during expansion of
the repetition.

© SEMI 2003 8 SEMI Draft Document 3626 2003/04/23

/psemr

TYPE 1]
— 1 1] TYPE 2

00000 7 C

TYPE3 __ —
- TYPES 4,5 |

U U =
|:| TYPES 6,7

] N e []

(]]
B (] a [] [] L]] TYPES 1041

i
e @Dmfm

m-displaceme
Figure 7-5
Repetition Types

7.6.14EXCEPTIONHANDLING: A repetitiontype outside the range of 0 to 11 should be treated as a fatal error. A
repetitiontype of O may not be the fingpetitiontype used within a cell.

7.7 POINT LISTS

7.7.1 Apoint-list represents a list of geometric coordinates for polygons or paths, and consistssigmed-integer
denoting its type, followed by a list deltas in one of several formats. The initial vertex>ay) is supplied by the
POLYGON or PATH record and is not part of ti@int-list, vertex-count (anunsigned-integgris the number of
points or deltasxcluding the initial ertex and ag implicit vertices

Table 7-7: Point List Types

TYPE FORMAT DESCRIPTION
0 vertex-count [1-delta [... 1-delta]] Implicit manhattan delta point-list (horizontal-first)
1 vertex-count [1-delta [... 1-delta]] Implicit manhattan delta point-list (vertical-first)
2 vertex-count [2-delta [... 2-delta]] Explicit manhattan delta point-list
3 vertex-count [3-delta [... 3-delta]] Explicit octangular delta point-list
4 vertex-count [g-delta [... g-delta]] Explicit all-angle delta point-list
5 vertex-count [g-delta [... g-delta]] Explicit all-angle double-delta point-list

7.7.2 Apoint-list of type 0 consists of a list dfdeltas representing alternating horizontal and vertical relative dis-
placements, with the first displacement implictityrizontal. When describing a polygpaint-listin this form, the

final twodisplacements are omitted, since they can be unambiguously implied from the current point, the last edge,
and the starting point. When describing a polyg@ntex-count must be an even number greater than or equal to 2.

SEMI Draft Document 3626 2003/04/23 9 © SEMI 2003

/psemr

7.7.3 Apoint-list of type 1 consists of a list dfdeltas representing alternating vertical and horizontal relative dis-
placements, with the first displacement implicigigrtical. When describing a polyg@oint-listin this form, thefinal
twodisplacements are omitted, since they can be unambiguously implied from the current point, the last edge, and the
starting point. When describing a polygerrtex-count must be an even number greater than or equal to 2.

7.7.4 Apoint-list of type 2 consists of a list @ deltas representing a series of manhattan relative displacements.
When describing a polyggooint-listin this form, the final displacement is omitted, since the polygon is assumed to
be implicitly closed, but this final implicit displacement must bmanhattardisplacement, with eithekx=0 or Ay=0.

7.7.5 Apoint-list of type 3 consists of a list 8fdeltas representing a series of octangular relative displacements.
When describing a polyggooint-listin this form, the final displacement is omitted, since the polygon is assumed to
be implicitly closed, but this final implicit displacement must be@angulardisplacement at an angle that is an
integral multiple of 45°.

7.7.6 Apoint-list of type 4 consists of a list gfdeltas representing a series of any-angle relative displacements.
When describing a polygguoint-listin this form, the final displacement is omitted, since the polygon is assumed to
be implicitly closed.

7.7.7 Apoint-listof type 5 consists of a list @j-deltas representing a series of adjustments to a relative displacement
vector, with the initial vector set téx=0, Ay=0). To calculate the coordinates of each successive point, the x and y
components of each successiyeeltaare added to the relative displacement vector, which in turn describes the rela-
tive displacement from the current point to the next point. When describing a pobggonlistin this form, the final
displacement is omitted, since the polygon is assumed to be implicitly closed. This fasintdist is intended to

allow more compact representation of polygons and paths which are approximations of large-field curvilinear figures
on a fine grid, where the curvature is not extreme.

- (X’y*)----l (>;,y)
l - Type 0 i / l s 4,'

> f I~ Type3 .° y

v Typel |] y ’
S B N g /
' Y ’ y
xy) xy)
—
(x.y)
v - - " Types
\/r
Figure 7-6

Point Lists Describing Polygons

Table 7-8: Polygon Point Lists for Figure 7-6

TYPE BIT PATTERN

0 {00000000 00000100 00001100 00001000 00010001 00000101
00000001 00000100 00010001 00000100 00000100 00000100
00000010 00000101 00100000 00011001 00010010 00001011 00010010
00000011 00000100 00010101 00100001 00110000 00010011
00000100 00000010 01000100 00001001 00001101

00000101 00001001 00000001 00000011 00101001 00000000 00000001 00000100
00000001 00000011 00000001 00000011 00101011 00000100 00101011 00000000
00000001 00000011 00000001 00000011

gl | W N|

© SEMI 2003 10 SEMI Draft Document 3626 2003/04/23

/psemr

7.7.8EXCEPTION HANDLING: Apoint-listtype outside the range of 0 to 5 should be treated as a fatal error. For
point-listtypes 0-1, successive coincident points and/or adjacent colinear edges are not permittechafhattan
implicit closing vector for a polygon usingpint-listtype 2, or anon-octangulaimplicit closing vector for a polygon
usingpoint-listtype 3 should be treated as a fatal error. For polygons ysing-listtypes 0-1, a vertex count which

is odd or less than 2 should be treated as a fatal error.

7.8 PROPERTY VALUES

7.8.1 Aproperty-valuestores one element of a property value list. It consists ohsigned-integewhich encodes
its type, followed by either the value itself or a reference number. Types Geam@hich conform to the scheme
described in Table 7-3 on page 5.

Table 7-9: Property Value Types
TYPE FORMAT
0-7 |real (see Table 7-3)
8 unsigned-integer
9 signed-integer

10 |a-string
11 |b-string
12 |n-string

13 |propstring-reference-number (implied a-string)
14 |propstring-reference-number (implied b-string)
15 |propstring-reference-number (implied n-string)

7.8.2EXCEPTIONHANDLING: A property-valudype outside the range of 0 to 15 should be treated as a fatal error.
Use of apropstring-reference-number for which there is no correspondifROPSTRING record within the same
OASIS file should be treated as a fatal error.

8 CELL REFERENCING

8.1 As in GDSII Stream, cells in OASIS are identifiechayne. TheCELL record not only introduces a cell defini-
tion but also defines its nanfeLACEMENT records refer by name to the cell being placed. As in GDSII Stream,
there are no “anonymous” cells in OASIS.

9 LAYERS, DATATYPES, AND TEXTTYPES

9.1 As in GDSII Stream, every <geometry> has associated withyieanumbeiand adatatype numbeand every
text element has associated with ieztlayer numbeand atexttype number

SEMI Draft Document 3626 2003/04/23 11 © SEMI 2003

/psemr

10 MODAL VARIABLES

10.1 For compaction purposes, selected data elements in many OASIS records may be implicitly specified through
the use ofnodal variablesr stored state. At the beginning of the file, and whene@&ld. or <name>record is
encountered, all modal variables with the exceptioplatement-xplacement-ygeometry-xgeometry-ytext-x and

text-y are set to a state ohdefine¢glthe exceptions just mentioned are set to 0. As various elements appear in the

cell's description, modal variables related to those elements are set from the elements’ definitions. These modal vari-
ables can then be used implicitly by successive elements. A modal variable may hold a single valugsooieay-

w, or a multi-variable structure such aepetition

Table 10-1: Modal Variables

MODAL VARIABLES RELATED RECORDS

repetition PLACEMENT, TEXT, POLYGON, PATH,
RECTANGLE, TRAPEZOID, CTRAPEZOID,
CIRCLE, XGEOMETRY

placement-x, placement-y, placement-cell PLACEMENT
layer, datatype POLYGON, PATH, RECTANGLE, TRAPEZOID,
CTRAPEZOID, CIRCLE, XGEOMETRY
textlayer, texttype, text-x, text-y, text-string TEXT
geometry-x, geometry-y POLYGON, PATH, RECTANGLE, TRAPEZOID
CTRAPEZOID, CIRCLE, XGEOMETRY
Xy-mode PLACEMENT, TEXT, POLYGON, PATH,

RECTANGLE, TRAPEZOID, CTRAPEZOID,
CIRCLE, XGEOMETRY,
XYABSOLUTE, XYRELATIVE

geometry-w, geometry-h RECTANGLE, TRAPEZOID, CTRAPEZOID
polygon-point-list POLYGON
path-halfwidth, path-point-list PATH
path-start-extension, path-end-extension
ctrapezoid-type CTRAPEZOID
circle-radius CIRCLE
last-property-name, last-value-list PROPERTY

10.2 Modal variabley-modegoverns the interpretation of tixeandy fields for those related record types indicated in
Table 10-1. Two interpretation modes are providsasoluteandrelative See section 21 on page 18 for a discussion
of how these two modes work.

10.3EXCEPTION HANDLING: An OASIS record which implicitly references a modal variable which is in the
undefinedstate should be treated as a fatal error.

11 RECORDS

11.1 The basic unit of information in an OASIS file isexord A record consists of a singlensigned-integewhich
encodes thescord-ID, followed by the remainder of the record’s descriptive data. In this specificgatond-ID
values are displayed as decimal numbers enclosed in apostrophes.

11.2 TheCBLOCK record is a special case since it encapsulates a series of ordinary records in byte-compressed
form. When eCBLOCK record is encountered while reading an OASIS file, it is first necessary to decompress its
data, which will produce one or more ordinary records, which can in turn be decoded. For more information on
CBLOCK records refer to section 35 on page 28.

© SEMI 2003 12 SEMI Draft Document 3626 2003/04/23

/psemr

11.3 Most records have an implicit length—the record must be parsed and decoded in order to determine its length.
TheXNAME , XELEMENT , andXGEOMETRY records are exceptions to this. They encapsulate all of their user-
defined data in a single variable-lendpstring, so they can be used for prototyping new record types, hiding embed-
ded proprietary data, supporting local non-interoperable extensions, etc. without rendering an OASIS file illegible to
older readers, which can simply note the string length and skip over the record.
11.4EXCEPTION HANDLING: OASIS processors should treat the nesting@BIBOCK record within another
CBLOCK record as a fatal error.
12 PAD RECORD
12.1 APAD record provides a simple way to reserve space within an OASIS file. It has the following format:

lO!
12.2PAD records may be inserted between any other two records.

12.3EXCEPTION HANDLING: The presence ofRAD record before th8 TART record or after th&ND record
should be treated as a fatal error.

13 START RECORD

13.1 ASTART record identifies the beginning of an OASIS file, and immediately follows the <magic-bytes>
sequence described in section 6.4 on page 3. It has the following format:

‘1’ version-string unit offset-flag [table-offsets]

13.2 Theversion-string is ana-stringwhose value is “1.0” for this version of the OASIS specification. Version “1.0”
corresponds to the OASIS format as described in this document.

13.3 Theunit declaration is @ositive real number which specifies the global precision of the OASIS file’s coordinate
system in grid steps per micron. The OA8H# value is essentially the reciprocal of the first value in the GDSII
Stream UNITS record.

13.4offset-flag (anunsigned-integ®g is 0 when thdable-offsetsstructure is stored in th8 TART record;offset-flag

is 1 when theable-offsetsstructure is instead stored in tBBD record. The option of storingble-offsetsin the

END record is provided to make it possible to write an OASIS file sequentially, with no seek-and-update access
required, while still providing cell-level random-access capability for subsequent readers of that OASIS file.

13.5 Thetable-offsetsstructure consists of 6pairs ohsigned-integerdEach pair consists offéag field, and a corre-
spondingoyte-offsefield, in the following order:

Table 13-1: Table Offset Order

FLAG BYTE-OFFSET
cellname-flag cellname-offset
textstring-flag textstring-offset
propname-flag propname-offset
propstring-flag propstring-offset
layername-flag layername-offset

xname-flag xname-offset

SEMI Draft Document 3626 2003/04/23 13 © SEMI 2003

/psemr

13.6 Each of thélagfields is either 1, indicatingtrict mode, or 0, indicatingon-strictmode, for its respective table.
The correspondingyte-offsefield indicates the position of the first record of its respective table relative to the first
byte (byte 0) of the OASIS file. Byte-offsebf 0 indicates the absence of that particular table.

13.7 Innon-strictmode, records of the corresponding type may occur anywhere in the file, even if some of them have
been gathered into a table pointed to by the correspohgteepffset

13.8 Instrict mode all records of the corresponding type (plus any assocRRAPERTY records) have been gath-
ered into a single contiguous table pointed to by the correspobygliegffsetPAD records are also permitted in

strict mode tables. In additiostrict modeguarantees that all references to the corresponding class of objects (names,
strings, or cells) are made exclusivelyrbference-number

13.9 When a givestrict mode table has been encapsulated within one or @BteOCK records, the corresponding
byte-offseshould point to the first byte of the fiGBLOCK record containing that table, and the first record of the
table must be the first record which appears after decompressionGBIHHCK record. Adherence to this require-
ment means that it is not permissible to encapsulate more thatrichmode table within a sing@BLOCK

record, nor is it permissible to begirst@ict mode table in the middle ofGBLOCK record.

13.10EXCEPTION HANDLING: The absence of3TART record as the first record in an OASIS file should be

treated as a fatal error. A valuewhit which isNaN, Inf, or non-positive, should also be treated as a fatal error. When

a given table offset is nonzero and the table is flaggstties the presence of a “stray” record of that type located
discontiguously from its tabular group should be treated as a fatal error, and any records which fesfecense-
numberaccess for that class of objects should be treated as a fatal error. An OASIS reader which does not rely on any
of the record groupingeference-numberndbyte-offseguarantees provided Isgrict mode is not required to detect

and report any exceptions relatedstact mode.

14 END RECORD

14.1 AnEND record identifies the end of the OASIS file. TBBID record must be the last record in the file; no trail-
ing bytes are permitted. It has the following format:

‘2’ [table-offsets] padding-string validation-scheme [validation-signature]

14.2 The presence of thiable-offsetsstructure is governed kgffset-flagin the START record (see section 13). The
padding-string (ab-string) must be sized and inserted by the OASIS writer so that the total byte lengtledfidhe
record, including theecord-ID, is exactly 256 bytes. This makes it possible for an OASIS reader to find the END
record (and antable-offsetsandvalidation-signature) using a relative seek from the logical end-of-file, avoiding
the need to store a forward pointer in 8IBART record. The contents padding-string should be initialized to

NUL characters.

14.3validation-schemeis anunsigned-integewhich selects the validation scheme used,\atidation-signature
is an optional scheme-dependent group of bytes used for validating the integrity of the OASIS file. The following val-
idation schemes are defined:

Table 14-1: END Record Validation Schemes

SCHEME | DESCRIPTION VALIDATION
SIGNATURE LENGTH
0 No Validation 0
1 CRC32 4
2 CHECKSUM32 4

© SEMI 2003 14 SEMI Draft Document 3626 2003/04/23

/psemr

14.4 CRC32 Validation
14.4.1 The CRC32 polynomial is specified in ISO 3309:

X32+X26+X23+X22+X16+X12+X11+X10+X8 +X7 +X5 +)(1 +x2 +Xl +XO
With the left-most bit representing the most significant bit, this corresponds to a value of:

binary 1 0000 0100 1100 0001 0001 1101 1011 0111
hexadecimal 104c11db7

14.4.2 The CRC32 value is computed using all of the bytes in the OASIS file from the first byteSSART record

to theEND record’svalidation-schemeinteger. It is byte-order dependent. The resulting 32-bit word is stored in the
last 4 bytes of the file, with the least significant byte first. This calculation is usually implemented using a table-
lookup shift/XOR method. See Appendix 1 for sample C-language source code.

14.5 CHECKSUMS32 Validation

14.5.1 The CHECKSUMS3?2 validation signature is computed as a simple unsigned arithmetic summation of all of the

bytes in the OASIS file from the first byte of tiBTART record to theEND record’svalidation-schemeinteger. This

value is then truncated to its least significant 32 bits and stored in the last 4 bytes of the file, with the least significant
byte first. It is not byte-order dependent, and this characteristic makes it somewhat easier to calculate if the file is not
written sequentially. It is, however, far less effective than CRC32 for detecting errors. See Appendix 1 for sample C-
language source code.

14.6EXCEPTIONHANDLING: OASIS processors should treat the absence @&M&B record in an OASIS file as a
fatal error.

15 CELLNAME RECORD

15.1 ACELLNAME record associates the name of a cell with a unique reference number. ThiCalldwsnd
PLACEMENT records, if desired, to avoid redundantly storing the actual text of the cell name and instead refer to
the cell by its assigned reference number. It has the following format:

‘3’ cellname-string
‘4’ cellname-string reference-number

15.2cellname-stringis ann-stringwhich holds the cell name. Thieference-numberis anunsigned-integewhich
is either implicitly or explicitly assigned to the cell. Implicit assignment occurs in record type ‘3’, by assigning
sequential reference numbers beginning with 0 as each sucd@BsikBIAME record is encountered. Explicit
assignment occurs in record type ‘4’.

15.3 Two standard properties, BOUNDING_BOX andS_CELL_OFFSET (described in section A2-2 on

page 39), may be associated with e&&LLNAME record. When alCELLNAME records have been grouped into

a single contiguous table strict mode (as described in section 13 on page 13), witf aBELL_OFFSET property

for everyCELLNAME record, the table forms a complete index of all cells in the OASIS file, suitable for random
access.

15.4 Record types ‘3’ and ‘4’ may not both be used in the same OASIS file.

15.5EXCEPTION HANDLING: The appearance of M@ELLNAME records in the same file with the same num-

ber but different names, or tV@ELLNAME records in the same file with the same name but different numbers,
should be treated as a fatal error. The appearance of both record types ‘3’ and ‘4’ in the same OASIS file should be
treated as a fatal error. The presence of more tharso@ELL_OFFSET or S_BOUNDING_BOX property after a
givenCELLNAME record should be treated as a fatal error.

SEMI Draft Document 3626 2003/04/23 15 © SEMI 2003

/psemi
16 TEXTSTRING RECORD

16.1 ATEXTSTRING record associates a text string with a unique reference number. This a4/ records, if
desired, to avoid redundantly storing the actual text of the string and instead refer to the string by its assigned refer-
ence number. It has the following format:

‘B’ text-string
‘6’ text-string reference-number

16.2text-string is ana-stringwhich holds the text string. Theference-numberis anunsigned-integewhich is

either implicitly or explicitly assigned to the text string. Implicit assignment occurs in record type ‘5’, by assigning
sequential reference numbers beginning with 0 as each sucCESXIVETRING record is encountered. Explicit
assignment occurs in record type ‘6’

16.3 Record types ‘5’ and ‘6’ may not both be used in the same OASIS file.

16.4EXCEPTION HANDLING: The appearance of tWEXTSTRING records in the same file with the same

number but different names, or tW&XTSTRING records in the same file with the same name but different num-
bers, should be treated as a fatal error. The appearance of both record types ‘5’ and ‘6’ in the same OASIS file should
be treated as a fatal error.

17 PROPNAME RECORD

17.1 APROPNAME record associates the name of a property with a unique reference number. ThiBRIDR¥s
ERTY records, if desired, to avoid redundantly storing the actual text of the property name and instead refer to the
property name by its assigned reference number. It has the following format:

‘7’ propname-string
‘8’ propname-string reference-number

17.2propname-string is ann-stringwhich holds the property name. Tigéerence-numberis anunsigned-integer
which is either implicitly or explicitly assigned to the property name. Implicit assignment occurs in record type ‘7’,
by assigning sequential reference numbers beginning with 0 as each sucB&RBIAME record is encountered.
Explicit assignment occurs in record type ‘8'.

17.3 Record types ‘7’ and ‘8’ may not both be used in the same OASIS file.

17.4EXCEPTION HANDLING: The appearance of tdiiROPNAME records in the same file with the same num-

ber but different names, or tRROPNAME records in the same file with the same name but different numbers,
should be treated as a fatal error. The appearance of both record types ‘7’ and ‘8’ in the same OASIS file should be
treated as a fatal error.

18 PROPSTRING RECORD

18.1 APROPSTRING record associates a property string with a unique reference number. This RR®DBERTY

records, if desired, to avoid redundantly storing the actual text of the property string and instead refer to the property
string by its assigned reference number. It has the following format:

‘9’ prop-string
‘10’ prop-string reference-number

© SEMI 2003 16 SEMI Draft Document 3626 2003/04/23

/psemr

18.2prop-string is ana-string, b-string, or n-stringwhich holds the property string, depending on the referencing
PROPERTY record. Theeference-numberis anunsigned-integewhich is either implicitly or explicitly assigned

to the property string. Implicit assignment occurs in record type ‘9’, by assigning sequential reference numbers begin-
ning with 0 as each successR®OPSTRING record is encountered. Explicit assignment occurs in record type ‘10'.

18.3 Record types ‘9’ and ‘10" may not both be used in the same OASIS file.
18.4EXCEPTION HANDLING: The appearance of tMRROPSTRING records in the same file with the same

number but different names should be treated as a fatal error. The appearance of both record types ‘9’ and ‘10’ in the
same OASIS file should be treated as a fatal error.

19 LAYERNAME RECORD

19.1 ALAYERNAME record provides a means of mapping numeric (layer,datatype) and (layer,texttype) combina-
tions to layer names. It has the following format:

‘11’ layername-string layer-interval datatype-interval

‘12’ layername-string textlayer-interval texttype-interval
19.2 Record type ‘11’ maps a range of (layer,datatype) numbers to a layer name, and record type ‘12’ maps a range of
(textlayer,texttype) numbers to a layer name.

19.3layername-string is ann-string containing the layer name.

19.4 Each of the interval fields consists oluasigned-integedenoting the interval type, followed by 0, 1, or 2
unsigned-integereepresenting the bounds of that interval as follows:

Table 19-1: LAYERNAME Interval Types

TYPE BOUNDS IMPLIED RANGE
0 0 tooo
1 bound-a 0 tobound-a
2 bound-a bound-ato o
3 bound-a bound-a
4 bound-a bound-b | bound-ato bound-b

19.5LAYERNAME records may be repeated for the same layer name. The complete mapping for a layer name is
formed by the union of all layer, datatype, textlayer, and texttype ranges associated with that name.

20 CELL RECORD
20.1 ACELL record introduces a cell definition. It has the following format:

‘13’ reference-number
‘14’ cellname-string

20.2 In record type ‘13'reference-numberis anunsigned-integereferring to aCELLNAME record where the cell

name is stored. In record type ‘14&llname-string stores the cell name locally. In either representation, the cell
name must be amstring

SEMI Draft Document 3626 2003/04/23 17 © SEMI 2003

/psemr

20.3 All subsequent records in the file up to the i@kt L , END, or <name>record are considered to be part of that
cell.

20.4EXCEPTION HANDLING: Use of aeference-numberfor which there is no correspondi@iELLNAME
record within the same OASIS file should be treated as a fatal error. MuBtiple. records within a single file which
refer to the same cell name (in effect, a duplicate cell definition) should also be treated as a fatal error.

21 XYABSOLUTE & XYRELATIVE RECORDS

21.1 TheXYABSOLUTE andXYRELATIVE records control the value of modal variakjemode which in turn
governs the interpretation of tixeandy values found ilPLACEMENT , <geometry> andTEXT records. They con-
sist simply of aecord-ID with no additional fields:

15" = XYABSOLUTE
16" = XYRELATIVE

21.2 When eaclELL record is encountered, modal variakjemodes set toabsolute and related modal position
variablesplacement-xplacement-ygeometry-xgeometry-ytext-x andtext-yare set to 0. The presence of an
XYRELATIVE record forces modal variabkg-modeto relative, and the presence of XYABSOLUTE record

forces modal variabley-modeto absolute This mode may be changed any number of times within a cell definition.

21.3 Inabsolutemode, explicitx andy values, when present, are used directly as the actual (x,y) coordinates.

21.4 Inrelativemode, explicitx andy values, when present, are interpreted as relative displacements from the stored
position information in modal variablggacement-xplacement-ygeometry-xgeometry-ytext-x ortext-y,depend-

ing on the record type in which they occur. In this mode, the actual x-coordinate is computed as the sunvalitbe

and its corresponding modal position variable, and the actual y-coordinate is computed as the sunvalthand

its corresponding modal position variable.

21.5 In bothabsoluteandrelative modes, when ar or y value is not explicitly present in the record, the value of the
corresponding modal position variable is used for the actual x or y coordinate. kbbothteandrelative modes,

the corresponding modal position variables are always updated with the actual (x,y) coordinate position.

21.6 The interpretation gfoint-listsandrepetitionsdoes not depend absoluteor relativemode. Also, even when a

given element includesrapetition the corresponding modal position variablpetement-xplacement-ygeometry-
X, geometry-ytext-x ortext-y) are always updated with the actual (x,y) coordinate of the initial element.

22 PLACEMENT RECORD

22.1 APLACEMENT record describes one or more placements of the referenced cell within the current cell. It has
the following format:

‘17’ placement-info-byte [reference-number | cellname-string] [X] [y] [repetition]

‘18’ placement-info-byte [reference-number | cellname-string] [magnification] [angle]
[x][y]]repetition]

22.2 In record type ‘17placement-info-bytecontains the bit patter@NXYRAAF .

22.3 In record type ‘18placement-info-bytecontains the bit patterNXYRMAF .

© SEMI 2003 18 SEMI Draft Document 3626 2003/04/23

/psemr

22.4 WherC=1, the cell reference is explicit, in which ca¢el means thaeference-number(anunsigned-inte-
ger) is present, and refers taCELLNAME record where the cell name is storb&0 means thatellname-string
(ann-string) is present and stores the cell name locally. W&®, N is ignored, and the value of modal variable
placement-celis used, referring to the same cell as the prevRiWSCEMENT record.

22.5x andy aresigned-integecoordinates representing either giesoluteor therelative (x,y) location of the place-
ment.X is 1 ifx is present, an¥ is 1 ify is present. When eith&rory is unspecified, the value of modal variable
placement-or placement-yrespectively, is used instead. Refer to section 21 on page 18 for a discussion of how
absoluteandrelative modes affect the interpretation>ofindy.

22.6Ris 1 ifrepetition is presentF=1 indicates reflection (or flip) about the x-aXs0 indicates no flip.

22.7 In record type ‘17’, magnification is 1.0 and rotation is a counterclockwise integral multiple of 90 degrees:
AA=0 for 0 degreeAA=1 for 90 degreepA=2 for 180 degrees, amA =3 for 270 degrees.

22.8 In record type ‘18’, magnification and rotation are reailgleis dimensioned in degrees, with positive values
denoting a counterclockwise rotatianagnification is, of course, unitles# is 1 ifangleis present, otherwise the
rotation defaults to 0 degreéd.is 1 if magnification is present, otherwise the magnification defaults to 1.0.

22.9 Each successi®t ACEMENT record updates all placement-related modal variables.

22.10EXCEPTION HANDLING: Use of aeference-numberfor which there is no correspondi@ELLNAME

record should be treated as a fatal error. Any recursive cell reference (a cell placing a copy of itself within itself)
should be treated as a fatal error. Magnification values which are negative or zero should be treated as fatal errors.
Floating point values dNaNor Inf for either magnification or angle should be treated as fatal efP ACEMENT

records may refer t€ELL records regardless of their relative location within the file, and may also reésteonal

cells which are not defined in the same file.

23 PLACEMENT TRANSFORM REPRESENTATION

23.1 EDA applications generally define a placenwemtsform as a 3x3 matrix:

X00 X01 0
T =1Xx10 X110
X20 X21 1

which transforms any point (p,q) via left-multiplication by the 1x3 row matrix [p g 1]. Conversion of OASIS place-
ment data to this form is defined as follows:

X00 = cos(angle) * magnification
X01 = sin(angle) * magnification
X10 = -f * sin(angle) * magnification
X11 = +f * cos(angle) * magnification
X20 =x

X21 =y

where f=1 ifF=0, f=-1 if F=1, “angle” is the rotation angle given by eith®A or anglein thePLACEMENT record,

and “magnification” isnagnification if specified, else 1.0. Note that if the rotation is a multiple of 90 degrees and the
magnification is 1.0, then the upper 2x2 sub-matrix takes one of the following eight forms and OASIS processors may
optimize accordingly:

SEMI Draft Document 3626 2003/04/23 19 © SEMI 2003

/psemr

Table 23-1: Standard Placement Values

F angle X00 X01 X10 X11
0 0° +1 0 0 +1
1 0° +1 0 0 -1
0 90° 0 +1 -1 0
1 90° 0 +1 +1 0
0 180° -1 0 0 -1
1 180° -1 0 0 +1
0 270° 0 -1 +1 0
1 270° 0 -1 -1 0

23.2 Wherrepetition is present, the above transform is that offingt element of the repetition. In general, the trans-
form of any elemenkE of the repetition is computed by right-multiplying the transform of the first element by the
matrix:

1 0
S=| o0 1
x-offset y-offsetl

to yield:

X00 X01
X10 X11
(X20 + x-offsef) (X21 + y-offsep 1

(Refer to section 7.6.3 and subsequent paragraphs beginning on page 8 for a discussicroffsbbandy-offset
are determined for the variotepetition types.)

24 TEXT RECORD

24.1 ATEXT record represents a text element, consisting of an (X,y) coordinate point and an annotation string. It has
the following format:

‘19’ text-info-byte [reference-number | text-string] [textlayer-number] [texttype-number]
[x][y]]repetition]

24.2 Thetext-info-byte contains the bit patter@CNXYRTL .

24.3 WherC=1, the text reference is explicit, in which cabel means thaeference-number(anunsigned-inte-
ger) is present, and refers tolEXTSTRING record where the text string is storéd=0 means thatext-string (an
a-string) is present and stores the text string locally. WBe€, N is ignored, and the value of modal variatebet-
stringis used instead.

24.4x andy aresigned-integecoordinates representing either giesoluteor therelative (x,y) location of the text
elementX is 1if x is present, ant is 1 if y is present. When eitherory is unspecified, the value of modal variable
text-xor text-y respectively, is used instead. Refer to section 21 on page 18 for a discussionatismuteandrela-
tive modes affect the interpretationoindy.

© SEMI 2003 20 SEMI Draft Document 3626 2003/04/23

/psemr

24.5Ris 1 if repetition is presentL is 1 if textlayer-number is presentT is 1 if texttype-number is present. Both
textlayer-number andtexttype-number areunsigned-integerdVhentextlayer-number and/ortexttype-number
are unspecified, they assume the value of modal variexiggyerandtexttype respectively.

24.6 Each successii&EXT record updates all text-related modal variables.

24 7TEXCEPTION HANDLING: Use of aeference-numberfor which there is no correspondif@EXTSTRING
record within the same OASIS file should be treated as a fatal error. Implicit use of modal vexalalgsror text-
typewhen they are in the undefined state should be treated as a fatal error.

25 RECTANGLE RECORD

25.1 ARECTANGLE record represents a rectangular figure whose edges are parallel to the x- and y-axes. It has the
following format:

‘20’ rectangle-info-byte [layer-number] [datatype-number] [width] [height][x] [y][repetition]
25.2 Therectangle-info-byte contains the bit patterSWHXYRDL .

25.3Ris 1 ifrepetition is presentl is 1 iflayer-number is presentD is 1 if datatype-numberis present. Both
layer-number anddatatype-number areunsigned-integersVhenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal varidbalesr anddatatype respectivelyW is 1 if width is present.H
is 1 if height is present. Botlidth andheight areunsigned-integersWhenwidth and/orheight are unspecified,
they assume the value of modal varialgjesmetry-wandgeometry-hrespectively.

25.4Sis 1 if the rectangle is a square. In this cadanustbe 0, andvidth, if present, is used for both dimensions of
the rectangle. Whewidth is unspecified, the value of modal variap@metry-wis used instead.

25.5x andy aresigned-integecoordinates representing either #igsoluteor therelative (x,y) location of the lower-

left corner of the rectangl&X is 1 if x is present, anl is 1 if y is present. When eitheror y is unspecified, the value

of modal variablegeometry-or geometry-yrespectively, is used instead. Refer to section 21 on page 18 for a discus-
sion of howabsoluteandrelative modes affect the interpretationofindy.

25.6 Each successiRECTANGLE record updates all rectangle-related modal variables. (\8h&nbothgeome-
try-w andgeometry-hare set to the rectangle’s width.)

25.7EXCEPTION HANDLING: Implicit use of modal variablggometry-w, geometry-h, layer, datatypevhen
they are in the undefined state should be treated as a fatal error. $¢hgd=1 should be treated as a fatal error. The
interpretation of zero-areRECTANGLE s is application-dependent.

26 POLYGON RECORD
26.1 APOLYGON record represents an arbitrary polygon figure. It has the following format:
‘21’ polygon-info-byte [layer-number] [datatype-number] [point-list] [x] [y] [repetition]
26.2 Thepolygon-info-byte contains the bit patter@OPXYRDL'.
26.3x andy aresigned-integecoordinates representing either tiesoluteor therelative (x,y) location of the initial
vertex of the polygonX is 1 ifx is present, andl is 1 ify is present. When eith&rory is unspecified, the value of

modal variablegeometry-»or geometry-yrespectively, is used instead. Refer to section 21 on page 18 for a discus-
sion of howabsoluteandrelative modes affect the interpretationofindy.

SEMI Draft Document 3626 2003/04/23 21 © SEMI 2003

/psemr

26.4R is 1 ifrepetition is presentl is 1 iflayer-number is presentD is 1 if datatype-numberis present. Both
layer-number anddatatype-number areunsigned-integersNVhenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variddnyes anddatatype respectively.

26.5P is 1 if point-list is present. Otherwise, the value of modal varigblggon-point-lists used. The format of
point-listsis defined in section 7.7 on page 9.

26.6 Each successiROLYGON record updates all polygon-related modal variables.

26.7EXCEPTION HANDLING: Polygons with fewer than three vertices should be treated as fatal errors. Implicit
use of modal variablgsolygon-point-list, layerpor datatypewhen they are in the undefined state should be treated as

a fatal error. The interpretation of self-intersecting polygons, reentrant polygons, and polygons with zero-area regions
is application-dependent.

27 PATH RECORD

27.1 APATH record represents an arbitrary path figure, which may be thought of as a polyline with finite width. It
has the following format:

‘22’ path-info-byte [layer-number] [datatype-number] [half-width]
[extension-scheme [start-extension] [end-extension]] [point-list][x] [y] [repetition]

27.2 Thepath-info-byte contains the bit pattereEWPXYRDL".

27.3x andy aresigned-integecoordinates representing either #iesoluteor therelative (x,y) location of the initial
vertex of the path centerlinX.is 1 ifx is present, an¥l is 1 ify is present. When eith&rory is unspecified, the

value of modal variablgeometry-»or geometry-yrespectively, is used instead. Refer to section 21 on page 18 for a
discussion of hovabsoluteandrelative modes affect the interpretationxofindy.

27.4R is 1 ifrepetition is presentl is 1 iflayer-number is presentD is 1 if datatype-numberis present. Both
layer-number anddatatype-number areunsigned-integersNhenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variddyes anddatatype respectively.

27.5Pis 1 if point-list is present. Otherwise, the value of modal varigidéh-point-listis used. The format gfoint-
listsis defined in section 7.7 on page 9.

27.6W is 1 if half-width (anunsigned-integgris present; if absent, the half-width value assumes the value of modal
variablepath-halfwidth The path is formed by expanding the centerline (represented by line segments connecting the
points) by the half-width value to each side.

27.7E is 1 ifextension-schemds present. Otherwisextension-schemgstart-extension andend-extensionare
absent, and the values of modal variaplath-start-extensigrandpath-end-extensioare used instead.

27.8 When presengxtension-schemganunsigned-integgrcontains bit patterrD000SSEE The SShits govern

the path starting extension, and Eie bits govern the path ending extension. Bsifirt-extension(present only
whenSS='11") andend-extension(present only wheBE='11") are signed-integersas in GDSII Stream, with posi-

tive values causing the path to extend beyond its starting and/or ending vertices, and negative values causing the path

to retract from its starting and/or ending vertices.

© SEMI 2003 22 SEMI Draft Document 3626 2003/04/23

/psemr

Table 27-1: Path Extension Schemes

SS BITS DESCRIPTION
00 Usepath-start-extensiomodal variable
01 Use flush (zero-length) extension at starting vertex
10 Use path-halfwidth extension at starting vertex
11 Use explicitstart-extensionat starting vertex
EE BITS
00 Usepath-end-extensiomodal variable
01 Use flush (zero-length) extension at ending vertex
10 Use path-halfwidth extension at ending vertex
11 Use explicitend-extensionat ending vertex

27.9 Each successiRATH record updates all path-related modal variables.

27.10 Various types of degenerate paths, where the half-width=0, the path traces back on itself, an extension is nega-
tive with magnitude greater than its segment length, etc. are not prohibited; their interpretation is application-depen-
dent. The path expansion scheme used at the path’s interior vertices or “joints” is also application-dependent.

27.11EXCEPTION HANDLING: Implicit use of modal variablggth-halfwidth, path-point-list, path-start-exten-
sion, path-end-extension, layer,datatypewhen they are in the undefined state should be treated as a fatal error.

28 TRAPEZOID RECORD

28.1 ATRAPEZOID record represents a trapezoid figure (a polygon with four vertices having at least two opposite
sides parallel and parallel to either the x- or the y-axis). It has the following format:

‘23’ trap-info-byte [layer-number] [datatype-number]
[width] [height] delta-a delta-b [x] [y] [repetition]

‘24’ trap-info-byte [layer-number] [datatype-number]
[width][height] delta-a [x] [y][repetition]

‘25’ trap-info-byte [layer-number] [datatype-number]
[width][height] delta-b [x] [y] [repetition]

28.2 Thetrap-info-byte contains bit patterrOWHXYRDL '

28.3Ris 1 ifrepetition is presentl is 1 iflayer-number is presentD is 1 if datatype-numberis present. Both
layer-number anddatatype-number areunsigned-integerdNhenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal varidblg=r anddatatype respectively.W is 1 if width is present.H

is 1 if heightis presentWidth andheight areunsigned-integerghich describe the overall dimensions of the bound-
ing box of the trapezoid as shown in Figure 28-1 on page 24. Wkémn and/orheight are unspecified, they
assume the value of modal variabdepmetry-wandgeometry-hrespectively.

28.4x andy aresigned-integecoordinates representing either #igsoluteor therelative (x,y) location of the lower-
left corner of the trapezoid’s bounding bdkis 1 ifx is present, an¥l is 1 ify is present. When eithgrory is
unspecified, the value of modal variaglEometry->or geometry-yrespectively, is used instead. Refer to section 21
on page 18 for a discussion of halsoluteandrelative modes affect the interpretationxoindy.

SEMI Draft Document 3626 2003/04/23 23 © SEMI 2003

/psemr

28.5delta-aanddelta-b arel-deltas and are both present in record type ‘23'. In record type ®lta-b is assumed
to be 0 and is omitted, and in record type ‘@8lta-ais assumed to be 0 and is omitted.

28.60is 0 if the trapezoid is horizontally-oriented, with top (PQ) and bottom (RS) sides parallel to the x-axis. In this
casedelta-arepresents (x- X;) anddelta-b represents (x- xJ).

28.70 s 1 if the trapezoid is vertically-oriented, with left (PQ) and right (RS) sides parallel to the y-axis. In this case,
delta-arepresents (y- yz) anddelta-b represents (y- ys).

28.8 Each successiNidRAPEZOID record updates all trapezoid-related modal variables.

...... 2
' ©
12
P W Q
| ' 4
I h
: X ®
(€8 R R S e
[¥]
< JE—— ©
delta-a delta-b
Figure 28-1

Horizontal and Vertical Trapezoids

28.9EXCEPTION HANDLING: For any trapezoid, deltas of sufficient magnitude to cause segments PR and QS to
cross, as well as any delta which causes either segment PR or QS not to fit diagonally within the bounding box,
should be treated as fatal errors. Implicit use of modal variad@emetry-w, geometry-h, layer,datatypevhen they

are in the undefined state should be treated as a fatal error. The interpretation of zero-area trapezoids is application-
dependent.

29 CTRAPEZOID RECORD

29.1 ACTRAPEZOID record represents a trapezoid figure in a compact form by assuming that two sides are paral-
lel to either the x- or the y-axis, and the remaining two sides form either a 45- or 90-degree angle with them. It has the
following format:

‘26’ ctrapezoid-info-byte [layer-number] [datatype-number]
[ctrapezoid-type] [width] [height] [x][y] [repetition]

29.2 Thectrapezoid-info-byte contains the bit pattermWHXYRDL .

29.3Ris 1 ifrepetition is presentl is 1 iflayer-number is presentD is 1 if datatype-numberis present. Both
layer-number anddatatype-number areunsigned-integeraNhenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal varidbalges anddatatype respectivelyW is 1 if width is present.H

is 1 if height is present. Botkwidth andheight areunsigned-integersand represent the width (w) and height (h) of
the trapezoid’s bounding box, respectively. Whadth and/orheight are unspecified, they assume the value of
modal variablegeometry-wandgeometry-hrespectively.

29.4x andy aresigned-integecoordinates representing either #igsoluteor therelative (x,y) location of the lower-
left corner of the trapezoid’s bounding bdkis 1 ifx is present, an¥l is 1 ify is present. When eith&rory is

© SEMI 2003 24 SEMI Draft Document 3626 2003/04/23

/psemr

unspecified, the value of modal variaglEometry->or geometry-yrespectively, is used instead. Refer to section 21
on page 18 for a discussion of halsoluteandrelative modes affect the interpretation>oaindy.

29.5T is 1 if ctrapezoid-type (anunsigned-integgris present; otherwise it assumes the value of modal variable
ctrapezoid-typeTypes 0-25 are depicted in figure 29-1:

T Ty W
h 0 : X 2 h : X
; ' Lo 11
W ! h
£ay) : " . h)
W g :
1 I w w Lo
h ! xy) xy) (X (x.y)
<y
W W W W
' w ' ' :
o)) o - h 12 13 h 14 h 15
xy) -~ Ky)" "7 Ky~ 77
h 24 W 25
W w
(xy) (xy)

Figure 29-1
The 26 Standard CTRAPEZOID Types

29.6 The triangle, rectangle, and square forms are provided for compactness and for compatibility with some mask
writing pattern file formats. For types 16-19, 22-23, anchight is not used, and must be 0. For types 20-21,
width is not used an@/ must be 0.

29.7 Each successi&TRAPEZOID record updates all ctrapezoid-related modal variables with the following
exception: for the forms where only onevgtith or height is used (types 16-23 and 25), modal variabksmetry-
w or geometry-hare both updated to match the specified dimension.

29.8EXCEPTION HANDLING: For types 0-3, (w < h) should be treated as a fatal error. For types 4-7, (w < 2h)
should be treated as a fatal error. For types 8-11, (h < w) should be treated as a fatal error. For types 12-15, (h < 2w)
should be treated as a fatal error. For types 16-19, 22-23, and Bbyalue of 1 should be treated as a fatal error. For

types 20-21, &V value of 1 should be treated as a fatal error. A valatrapezoid-type greater than 25 should be

treated as a fatal error. Implicit use of modal variablespezoid-type, geometry-w, geometry-h, layredatatype

when they are in the undefined state should be treated as a fatal error. The interpretation of zero-area trapezoids is
application-dependent.

SEMI Draft Document 3626 2003/04/23 25 © SEMI 2003

/psemi
30 CIRCLE RECORD

30.1 ACIRCLE record represents a circular figure. It has the following format:
‘27’ circle-info-byte [layer-number] [datatype-number] [radius][x] [y] [repetition]
30.2 Thecircle-info-byte contains the bit patter®0rXYRDL .

30.3R is 1 ifrepetition is presentlL is 1 iflayer-number is presentD is 1 if datatype-number is present. Both
layer-number anddatatype-number areunsigned-integerdNhenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variddyes anddatatype respectively.

30.4x andy aresigned-integecoordinates representing either tiesoluteor therelative (x,y) location of the circle’s
centerX is 1 ifx is present, an¥ is 1 ify is present. When eith&rory is unspecified, the value of modal variable
geometry->xor geometry-yrespectively, is used instead. Refer to section 21 on page 18 for a discussiorabftow
lute andrelative modes affect the interpretation>oaindy.

30.4.1r is 1 ifradius is present, otherwigadius assumes the value of modal variatitele-radiusinstead.
30.5 Each successiRCLE record updates all circle-related modal variables.
30.6EXCEPTION HANDLING: Implicit use of modal variablesrcle-radius, layeror datatypewhen they are in

the undefined state should be treated as a fatal error. The interpretation of z&i&&lda s is application-depen-
dent.

31 PROPERTY RECORD

31.1 Apropertyis an annotation element consisting of a name plus an optional list of values, supplying descriptive
information about the characteristics of the OASIS file or one of its components. A property may be associated with
the entire OASIS file, aname>record, sCELL , aPLACEMENT , or an<element>record within a cell. The
PROPERTY record has the following format:

‘28’ prop-info-byte [reference-number | propname-string] [prop-value-count | [<property-value>*]
t297

31.2 Record type ‘29’ provides a compact way to specify a duplicate copy of the most-recently-seen property
together with its value list. It makes use of modal varigllgtsproperty-namandlast-value-list which were
defined by a previolBROPERTY record.

31.3 Theprop-info-byte contains the bit pattert UUUVCNS'.

31.4 WherC=1, the property name reference is explicit, in which &&sk means thakeference-number(an
unsigned-integgris present, and refers toRROPNAME record where the property name is stordd means that
propname-string (ann-string) is present and stores the property name locally. \@n N is ignored, and the
value of modal variablst-property-namés used instead.

31.5 Wherv=0, values ofJUUU from 0 to 14 indicate the number g@property-value> fields which are part of this
record, angrop-value-countis omitted. Whev=0 andUUUU=15, prop-value-count, anunsigned-integeris
present and indicates the numbekpfoperty-value> fields. Whenv=1, UUUU must be 0, and modal varialest-
value-listsupplies the value list. See section 7.8 on page 11 for a descriptiproperty-value> types.

© SEMI 2003 26 SEMI Draft Document 3626 2003/04/23

/psemr

31.6 WherS=1, a standard property is indicated; wiE®, a non-standard or user property is indicated. The list of
OASIS Standard Properties appears in Appendix 2 on page 39. That appendix also describes how to represent GDSII-
Stream-style properties using t8eGDS_PROPERTYstandard property.

31.7 Each successiRROPERTY record updates modal variablast-property-nameandlast-value-list

31.8 In generaPROPERTY records directly follow the record with which they are associ@BQPERTY
records occurring directly after tIBTART record are associated globally with the entire OASISRIROPERTY
records occurring after@ELL record or its correspondirf@ELLNAME record pertain to that entire cdlROP-
ERTY records occurring afterBLACEMENT record pertain to the placement(s) it describes, includépegtitions
PROPERTY records occurring after arelement>record pertain to that element and agpetitions

31.9PROPERTY records do not associate WBBBLOCK or PAD records. Instead, property association occurs as
though allCBLOCK records have been uncompressed, arfd/dl records have been deleted.

31.10EXCEPTION HANDLING: Implicit use of modal variabléast-property-namer last-value-listvhen they
are in the undefined state should be treated as a fatal error. Usfaveéace-numberfor which there is no corre-
spondingPROPNAME record should be treated as a fatal error.

32 XNAME RECORD

32.1 AnXNAME record allows backward-compatible extension of OASi8me>records. It associates a string
with a unique reference number. It has the following format:

‘30’ xname-attribute xname-string
‘31’ xname-attribute xname-string reference-number

32.2xname-string is user-defined as anstring, b-string, or n-stringwhich holds the name&name-attribute is an
unsigned-integeproviding the ability to associate ti&NAME with a user-defined class. Treference-numberis
anunsigned-integewhich is either implicitly or explicitly assigned to the name. Implicit assignment occurs in record
type ‘30’, by assigning sequential reference numbers beginning with 0 as each suckbeSME record is encoun-
tered. Explicit assignment occurs in record type ‘31".

32.3 Record types ‘30" and ‘31’ may not both be used in the same OASIS file.
32.4EXCEPTION HANDLING: The appearance of tedNAME records in the same file with the same reference

number but different names should be treated as a fatal error. The appearance of both record types ‘30’ and ‘31’ in the
same OASIS file should be treated as a fatal error.

33 XELEMENT RECORD

33.1 AnXELEMENT record allows backward-compatible extension of OA&®ment>records. It has the fol-
lowing format:

‘32" xelement-attribute xelement-string

33.2xelement-attribute is anunsigned-integeproviding the ability to associate th&ELEMENT with a user-
defined classcelement-stringis ab-string containing user-defined data.

SEMI Draft Document 3626 2003/04/23 27 © SEMI 2003

/psemr

34 XGEOMETRY RECORD

34.1 AnXGEOMETRY record allows backward-compatible extension of OASI8ometry>records. It has the
following format:

‘33’ xgeometry-info-byte xgeometry-attribute
[layer-number] [datatype-number] xgeometry-string [x] [y] [repetition]

34.2 Thexgeometry-info-byte contains the bit patter@00XYRDL'.

34.3R is 1 ifrepetition is presentlL is 1 iflayer-number is presentD is 1 if datatype-number is present. Both
layer-number anddatatype-number areunsigned-integerdNhenlayer-number and/ordatatype-number are
unspecified, they assume the value of modal variddyes anddatatype respectively.

34.4x andy aresigned-integecoordinates representing either #iesoluteor therelative (x,y) location of the geom-
etry. X is 1 ifx is present, an¥ is 1 ify is present. When eith&rory is unspecified, the value of modal variable
geometry->or geometry-yrespectively, is used instead. Refer to section 21 on page 18 for a discussiorabftow
lute andrelative modes affect the interpretation>oaindy.

34.5xgeometry-attribute is an integer providing the ability to associateXl@EOMETRY with a user-defined
classxgeometry-string is ab-string containing user-defined data describing the geometry.

34.6 Each successiéGEOMETRY record updates alGEOMETRY -related modal variables.

34.7EXCEPTION HANDLING: Implicit use of modal variablégyer, or datatypewhen they are in the undefined
state should be treated as a fatal error.

35 CBLOCK RECORD

35.1 ACBLOCK record provides a mechanism for embedding compressed data within the structure of an OASIS file
for additional compactness. It has the following format:

‘34’ comp-type uncomp-byte-count comp-byte-count comp-bytes

35.2comp-typeis anunsigned-integedescribing the type of compression used for this recandomp-byte-count
is anunsigned-integedescribing the number of bytes prior to compressioncantp-byte-countis anunsigned-
integerdescribing the number of bytes after compressiomp-bytesis a sequence of bytes containing the com-
pressed byte sequence.

35.3 Whercomp-type=0, the compression scheme is the lossless DEFLATE Compressed Data Format, Version 1.3,
as documented in RFC 1951 (1996). Other valueswip-type are reserved for future versions of the OASIS for-

mat; the intent is to be able to support a mixture of compression methods within a single OASIS file for maximum
compactness.

35.3.1 One example of compression/decompression software that is compliant with RFC 1951 is found in ZLIB ver-
sion 1.1.4 (March 2002). This software version can be used without any licensing or legal encumbrances. It is
expected that future versions of the ZLIB software will also remain RFC-1951-compliant. Users of future releases of
ZLIB are cautioned to check for continued conformance to RFC 1951 as well as any changes in the terms of use.

35.3.2 Use of the ZLIB software i@t mandatory in order to be compliant with the OASIS specification. Any com-
pression/decompression software that stores and processes data in conformance with RFC 1951 is OASIS-compliant.
It should be noted that alternatives to @8LOCK record may emerge in the future, supporting other compression
mechanisms. Use of multiple compression methods within a single OASIS file is not ruled out.

© SEMI 2003 28 SEMI Draft Document 3626 2003/04/23

/psemr

35.4 TheSTART, END, CELL , and neste€BLOCK records may not be stored within a compressed record. This
maintains the ability to perform random access at the cell level within an OASIS @BLACK record may not
encapsulate more than orstrict mode” name table (refer to sections 13 and 14 beginning on page 13). All other
sequences of records, of any length, may be store@BL&OCK record.

35.5EXCEPTION HANDLING: During the reading of @BLOCK record, it is a fatal error if the number of bytes
returned after decompression does not matdomp-byte-count

SEMI Draft Document 3626 2003/04/23 29 © SEMI 2003

/psemi
36 DETAILED BNF SYNTAX

36.1 This specification uses a modified Backus-Naur Form (BNF) notation to describe OASIS file syntax. The follow-
ing table summarizes the conventions used in the modified BNF:

Table 36-1: Modified BNF Notation

SYMBOL TERM MEANING

ABCD | Bold Uppercase|Denotes an OASIS record name

abcd Bold Lowercase|Denotes a fundamental data type defined in section 7

<> Angle Brackets [Enclose an element name which is further defined elsewhere in the BNF
-> Arrow Means “is composed of”
[Square BracketyEnclose element(s) which are optional, and if present, occur only once
{} Braces Enclose element(s) which are required
| Vertical Bar |Indicates a choice between mutually exclusive elements within { } braces
* Asterisk An asterisk following an element means the element may occur zero or more times
Ellipsis Appears between elements to indicate a variable-length list of like type

Single Quotes |Enclose a decimal number denoting an OA®iSigned-integer

wn

Double Quotes [Enclose a literal character string

“<CR¥ [Control Characteg Angle brackets enclose the name of an ASCII Control Character within a string

I Double Virgule |Indicates all characters to its right are comments—not part of the syntax

36.2 The OASIS syntax is detailed as follows:

<oasis-file> -> <magic-bytesSTART { CBLOCK |PAD | PROPERTY | <cell> | <name> }END

<name> -> {CELLNAME |TEXTSTRING |LAYERNAME |PROPNAME |PROPSTRING | XNAME }
<cell> -> {CELL { CBLOCK |PAD | PROPERTY | XYRELATIVE |XYABSOLUTE | <element>}*}
<element> -> { <geometry>HLACEMENT |TEXT | XELEMENT }

<geometry> -> {RECTANGLE |POLYGON |PATH | TRAPEZOID |CTRAPEZOID | CIRCLE | XGEOMETRY }
<magic-bytes> ->%SEMI-OASIS<CR><NL32

PAD -> ‘0’

START -> ‘1’ <version-string> <unit> <offset-flag> [<table-offsets>]

END -> ‘2’ [<table-offsets>] <padding-string> <validation-scheme> [<validation-signature>]

CELLNAME -> ‘3’ <cellname-string>
CELLNAME -> ‘4’ <cellname-string> <reference-number>

TEXTSTRING ->'5’ <text-string>
TEXTSTRING ->'6" <text-string> <reference-number>

PROPNAME -> ‘7’ <propname-string>
PROPNAME -> ‘8’ <propname-string> <reference-number>

PROPSTRING -> ‘9’ <prop-string>
PROPSTRING -> ‘10’ <prop-string> <reference-number>

LAYERNAME -> ‘11" <layername-string> <layer-interval> <datatype-interval>
LAYERNAME -> ‘12" <layername-string> <textlayer-interval> <texttype-interval>

CELL -> ‘13’ <reference-number>
CELL ->'14’ <cellname-string>

© SEMI 2003 30 SEMI Draft Document 3626 2003/04/23

/psemr

XYABSOLUTE ->‘1%’
XYRELATIVE ->'16

PLACEMENT ->*17’ <placement-info-byte> [<reference-number> | <cellname-string>]
[<x>]][<y>]][<repetition>]

PLACEMENT -> ‘18’ <placement-info-byte> [<reference-number> | cellname-string>]
[<magnification>] [<angle>] [<x>][<y>][<repetition>]

TEXT ->'19’ <text-info-byte> [<reference-number> | <text-string>] <I-t> [<x>] [<y>] [<repetition>]
RECTANGLE ->20" <rectangle-info-byte> <I-d> [<width>] [<height>] [<x>] [<y>] [<repetition>]
POLYGON -> ‘21’ <polygon-info-byte> <I-d> [<point-list>] [<x>] [<y>] [<repetition>]
PATH -> 22" <path-info-byte> <I-d> [<half-width>]
[<extension-scheme> [<start-extension>] [<end-extension>]]
[<point-list>] [<x>] [<y>] [<repetition>]
TRAPEZOID -> 23’ <trap-info-byte> <I-d> [<width>] [<height>] <delta-a> <delta-b>
[<x>][<y>][<repetition>]
TRAPEZOID -> ‘24’ <trap-info-byte> <I|-d> [<width>] [<height>] <delta-a>
[<x>][<y>][<repetition>]
TRAPEZOID -> ‘25’ <trap-info-byte> <I-d> [<width>] [<height>] <delta-b>
[<x>][<y>][<repetition>]

CTRAPEZOID ->'26" <ctrapezoid-info-byte> <I-d> [<ctrapezoid-type>] [<width>] [<height>] [<x>][<y>]
[<repetition>]

CIRCLE ->27' <circle-info-byte> <I-d> [<radius>] [<x>] [<y>] [<repetition>]

PROPERTY -> ‘28" <prop-info-byte> [<reference-number> | <propname-string>]
[<prop-value-count>] [<property-value>*]

PROPERTY -> ‘29’

XNAME -> ‘30’ <xname-attribute> <xname-string>
XNAME -> ‘31’ <xname-attribute> <xname-string> <reference-number>

XELEMENT -> ‘32’ <xelement-attribute> <xelement-string>

XGEOMETRY -> ‘33" <xgeometry-info-byte> <xgeometry-attribute> <l-d> <xgeometry-string> [<x>] [<y>]
[<repetition>]

CBLOCK ->'34" <comp-type> <uncomp-byte-count> <comp-byte-count> <comp-bytes>

SEMI Draft Document 3626 2003/04/23 31 © SEMI 2003

<table-offsets> -> <cellname-flag> <cellname-offset>

/psemr

<textstring-flag> <textstring-offset>

<propname-flag> <propname-offset>
<propstring-flag> <propstring-offset>
<layername-flag> <layername-offset>

<xname-flag> <xname-offset>

<offset-flag>, <cellname-flag>, <cellname-offset>, <textstring-flag>, <textstring-offset>,
<propname-flag>, <propname-offset>, <propstring-flag>, <propstring-offset>,
<layername-flag>, <layername-offset>, <xname-flag>, <xname-offsetrsigned-integer

<padding-string> --string

<validation-scheme> -mnsigned-integer
<validation-signature> -byte*

<placement-info-byte>, <text-info-byte>, <rectangle-info-byte>,
<polygon-info-byte>, <path-info-byte>, <trap-info-byte>, <ctrapezoid-info-byte>,
<circle-info-byte>, <prop-info-byte>, <xgeometry-info-byte>byte

<layer-interval>, <datatype-interval>, <textlayer-interval>, <texttype-interval> -> <layer-interval>
<layer-interval> -> { <li0> | <li1> | <li2> | <li3> | <li4>}

<lio> >0’

<li1> ->‘1" <bound-a>

<li2> -> ‘2’ <bound-a>

<li3> -> ‘3" <bound-a>

<li4> -> ‘4’ <bound-a> <bound-b>
<bound-a>, <bound-b> -emnsigned-integer

<l-d> -> [<layer-number>] [<datatype-number>]
<I-t> -> [<textlayer-number>] [<texttype-number>]
<layer-number>, <datatype-number>, <textlayer-number>, <texttype-numbansigned-integer

<reference-number> tnsigned-integer
<cellname-string>, <propname-string>, <layername-string> -> <n-string>
<version-string>, <text-string> -> <a-string>
<prop-string>, <xname-string> -> { <a-string> | <b-string> | <n-string> }
<xelement-string>, <xgeometry-string> -> <b-string>

<a-string>, <b-string>, <n-string> -> <string-lengthyte*
<string-length> ->unsigned-integer

<xname-attribute>, <xelement-attribute>, <xgeometry-attributeaznsigned-integer

<property-value> -> { <pvreal> | <pv8> | <pv9> | <pv10> | <pv1l> | <pv12> | <pv13> | <pv14> | <pv15>}
<pvreal> -> <real>

<pv8> ->‘8’ unsigned-integer
<pv9> ->'9’ signed-integer

<pv10> ->'10’
<pvil> ->'11
<pvlz> ->'12’
<pv1l3> ->'13
<pvl4> ->'14’
<pv1l5> ->'15’

© SEMI 2003

<a-string>
<b-string>
<n-string>
<reference-number>
<reference-number>
<reference-number>

32

/I a-string
/Il b-string
/I n-string

SEMI Draft Document 3626 2003/04/23

/psemr

<repetition> -> { <rep0> | <repl> | <rep2> | <rep3> | <repd> | < rep5> | <rep6> | <rep7> | <rep8> |
<rep9> | <repl0> | <repl1>}

<rep0> ->0’

<repl> ->'1' <x-dimension> <y-dimension> <x-space> <y-space>

<rep2> ->'2’ <x-dimension> <x-space>

<rep3> ->'3’ <y-dimension> <y-space>

<rep4> ->'4’ <x-dimension> <x-space> ... <x-space>

<rep5> ->'5’ <grid> <x-dimension> <x-space> ... <x-space>

<rep6> ->'6’' <y-dimension> <y-space> ... <y-space>

<rep7> ->'7’" <grid> <y-dimension> <y-space> ... <y-space>

<rep8> ->'8' <n-dimension> <m-dimension> <n-displacement> <m-displacement>

<rep9> ->'9’ <dimension> <displacement>

<repl0> ->'10’ <dimension> <displacement> ... <displacement>

<repll> ->'11’ <grid> <dimension> <displacement> ... <displacement>

<grid>, <x-dimension>, <y-dimension>, <dimension>, <n-dimension>, <m-dimension>,
<x-space>, <y-space> unsigned-integer

<displacement>, <n-displacement>, <m-displacement> -> <g-delta>

<point-list> -> { <pl0> | <pl1> | <pl2> | <pI3> | <pl4> | <pI5>}

<pl0> -> <vertex-count> <1-delta>* /I Implicit manhattan delta point-list (horizontal-first)
<pll> -> <vertex-count> <1-delta>* /I Implicit manhattan delta point-list (vertical-first)
<pl2> -> <vertex-count> <2-delta>* /I Explicit manhattan delta point-list

<pl3> -> <vertex-count> <3-delta>* /I Explicit octangular delta point-list

<pld> -> <vertex-count> <g-delta>* Il Explicit all-angle delta point-list

<pl5> -> <vertex-count> <g-delta>* I/ Explicit all-angle double-delta point-list

<vertex-count>, <half-width>, <extension-scheme>, <ctrapezoid-typensigned-integer
<width>, <height>, <radius> -xnsigned-integer

<prop-value-count> -®nsigned-integer

<delta-a>, <delta-b> -> <1-delta>

<comp-type>, <uncomp-byte-count>, <comp-byte-countansigned-integer
<comp-bytes> -hyte*

<x>, <y> ->signed-integer
<start-extension>, <end-extension>signed-integer

<unit>, <angle>, <magnification> -> <real>

<1-delta> ->signed-integer 1l xxx...xxxd
<2-delta> ->unsigned-integer /I xxx...xxdd
<3-delta> ->unsigned-integer /I xxx...xddd
<g-delta> ->unsigned-integer[unsigned-integer] Il XxX.. xxxdddO or xxx..xxxdl xxx...xxxd

<real> -> { <real0> | <reall> | <real2> | <real3> | <reald> | <real5> | <real6> | <real7>}

<real0> ->'0’ unsigned-integer /I Positive whole number
<reall> ->'1’ unsigned-integer /I Negative whole number
<real2> ->'2’ unsigned-integer /I Positive reciprocal

<real3> ->'3’ unsigned-integer /I Negative reciprocal

<real4> ->'4’ unsigned-integer unsigned-integer /I Positive ratio

<real5> ->'5’ unsigned-integer unsigned-integer /I Negative ratio

<real6> ->'6’ ieee-4 /I Single-precision floating point
<real7> ->'7’ ieee-8 /I Double-precision floating point

SEMI Draft Document 3626 2003/04/23 33 © SEMI 2003

/psemr

APPENDIX 1
CALCULATION OF VALIDATION SIGNATURES

Al-1 Sample CRC32 C-Language Source Code

The CRC32 must be calculated by processing the file contents as a single stream of bytes (CRC's are order-depen-
dent). The CRC should be initialized by calling:

uint32 crc; /* the crc value */
crc32_init(&crc);

As each chunk of data in written into the file, one should call :

byte *buf; /* data written to output */
size_t len; [*# of bytes of data written to output */

crc32_add(&crc, buf, len);
When theEND record is to be written, the CRC should be calculated using the
<id-value> and <validation-scheme> only.
The final value of the CRC32 should then be appended to the file as a 4-byte value in little-endian order.

#define CHG_ENDIAN32(a) { byte *p
p = (byte *) &(a); b=p[0]; p[0]=p(3]; p[3] b b=p[1]; p[1]=p[2]; p[2]=b; }

#ifdef BIG_ENDIAN_MACHINE

/* put calculated CRC in LITTLE_ENDIAN order (to align with byte ordering of the polynomial) */
CHG_ENDIAN32(crc);
#endif

/*

(c) Copyright 2003 SEMI no warranty, express or implied

not liable for damages resulting from or in connection with use of this software
*/

#include <stdio.h>
#include <errno.h>

#define TEST

JFRRRRAK IR FIFKATFTIKK |

/* basic data types */
/********************/

typedef unsigned char byte;
typedef unsigned int uint32;

/*************/

[* constants */

/*********)h\'**/

#define BUFFER_SZ 8 *1024
#define BITS_IN_BYTE 8

/**********/

/* macros */
/**********/

#define CHG_ENDIAN(a) {byte *p, t; p=(byte *) &(a); t=p[0]; p[0]=p[3]; p[3]=t; t=p[1]; p[1]=p[2]; p[2]=t;}

/*
CRC polynomial as specified in ISO 3309 and ITU-T V.42
used in Ethernet, FDDI, cksum, etc
polynomial is x*32 + x"26 + x"23 + x"22 + x"16 + x"12 + x*11 + x*10
+X"8 + X7 +xM5 +xM o+ xM2 + XM+ xM0

if the leftmost bit is the msb, this is
binary 1 0000 0100 1100 0001 0001 1101 1011 0111
hex 10 4 ¢ 1 1 d b 7
big order bit is implicit so we have
0x04c11db7
*/

© SEMI 2003 34 SEMI Draft Document 3626 2003/04/23

/psemr

#ifdef ILP32

define
define

define
define
#else

define
define

define
define
#endif

CRC32_POLY 0x04clldb7ul /* polynomial */
CRC32_CONSTANT 0x4b90b035ul /* constant which matches polynomial above */

LEFTMOST_BIT 0x80000000ul
ALL_BITS Oxfffffffful

CRC32_POLY 0x04clldb7u /* polynomial */
CRC32_CONSTANT 0x4b90b035u /* constant which matches polynomial above */

LEFTMOST_BIT 0x80000000u

ALL_BITS Oxffffffffu

/* initialized to zero by the compiler */
static uint32 Crc32_tbl[256];

static void

crc32_tb
{

int i;
uint32
int j;

|_load(void)

[

/* initialize auxiliary table */

for (i=

0; i < 256; i++)

{_
C=i<<24;

for (j

=0;j < BITS_IN_BYTE; j++)

¢ =c & LEFTMOST_BIT ? (c << 1) A CRC32_POLY : (c << 1);

;:rc32_tb|[i] =c;

void

crc32_init(uint32 *crc)

/* initialize auxiliary table (if necessary) */
if (ICrc32_tbI[1])
crc32_thl_load();

[* preload shift register, per CRC-32 spec */
*crc = ALL_BITS;

}

void

crc32_add(uint32 *crc,
byte *buf,
size_t len

{
uint32
size_t

val;
15

val = *cr;
val = ~val & ALL_BITS;

for (i =
val =

0;i<len;i++)
(val >> 8) ~ Crc32_tbl[(val buf[i]) & Oxff];

val = ~val & ALL_BITS;
*crc = val;

main(int

char
FILE

argc, char **argv)

*path;
*fptr;

SEMI Draft Document 3626 2003/04/23 35

© SEMI 2003

/psemr

size_t len;

byte buf[BUFFER_SZ];
uint32 crc;

uint32 crc_to_file;

svzitch (argc)

casel:
path = "<stdin>";
fptr = stdin; /* read from standard input */
break;

case 2:
/* open input file (use the b’ flag to read as binary rather than text) */
path = argv[1];
if ((fptr = fopen(path, "rb")) == NULL)
{

fprintf(stderr, "\nerror opening %s (%s)\n", path, strerror(errno));
exit(1);

break;

default :
fprintf(stderr, "\nusage: %s pathname\n", argv[0]);
fprintf(stderr, " -or-");
fprintf(stderr, "\n %s < pathname\n", argv[0]);
exit(1);

* initialize */
crc32_init(&crc);

[* calculate crc for all data in file */
while (len = (fread(buf, 1, BUFFER_SZ, fptr)))
crc32_add(&crc, buf, len);

if (feof(fptr))

fprintf(stderr, "\nerror reading %s (%s)\n", path, strerror(errno));
if (fptr != stdin)

fclose(fptr);
iexit(l);

if (fptr != stdin)
fclose(fptr);
crc_to_file = crc;
/* ensure CRC32 is written to Oasis file in LITTLE_ENDIAN byte order */

#ifdef BIG_ENDIAN_MACHINE
CHG_ENDIAN(crc_to_file);

#endif

#ifdef TEST
/* this is the crc value that should be the last 4 bytes in the file */
printf("crc_to_file = 0x%08x\n", crc_to_file);

/* assume the CRC32 value crc_to_file was appended to the end of the Oasis file */
/* add the CRC32 (in LITTLE_ENDIAN order) to the data stream and continue CRC calculation */
crc32_add(&crc, (byte *) &crc_to_file, sizeof(crc_to_file));
#endif
printf(“crc_constant (should be 0x%08x) = 0x%08x\n", CRC32_CONSTANT, crc);

exit(0);
}

© SEMI 2003 36 SEMI Draft Document 3626 2003/04/23

/psemr

Al-2 Sample CHECKSUM32 C-Language Source Code

/*

(c) Copyright 2003 SEMI

no warranty, express or implied

not liable for damages resulting from or in connection with use of this software
*

#include <stdio.h>
#include <errno.h>

[rrdxkkkkkdkk xRk kK |

/* basic data types */
/********************/

typedef unsigned char byte;
typedef unsigned int uint32;

#ifdef _ILP32

typedef unsigned long long uint64;
#else

typedef unsigned long uint64;
#endif

JREFRAK AT AKX |

[* constants */

/*************/

#define BUFFER_SZ 8 *1024
#define BITS_IN_BYTE 8

ikttt

/* macros */

[k

#define CHG_ENDIAN(a) {byte *p, t; p=(byte *)&(a); t=p[0]; p[0]=p[3]; p[3]=t; t=p[1]; p[1]=p[2]; p[2]=t;}

void
checksum_init(uint32 *chksum)

{
*chksum = 0;

void

checksum_add(uint32 *chksum,
byte *buf,
size_t len

{
uinté4 val; /* could be a uint32, but overflow handling is undefined */
size_t i;
val = (uint64) *chksum;
for (i=0;i<len; i++)
val += buf[i];, /*sum*/
val &= Oxffffffff; /* limit to 32 bits */
}

*chksum = (uint32) val;

main(int argc, char **argv)

char *path;

FILE *fptr;

size_t len;

byte buf[BUFFER_SZ];
uint32 chksum;

uint32 chksum_to_file;

switch (argc)

SEMI Draft Document 3626 2003/04/23 37

© SEMI 2003

/psemr

casel:
path = "<stdin>";
fptr = stdin; /* read from standard input */
break;

case 2 :
/* open input file (use the 'b’ flag to read as binary rather than text) */
path = argv[1];
if ((fptr = fopen(path, "rb")) == NULL)

fprintf(stderr, "\nerror opening %s (%s)\n", path, strerror(errno));
exit(1);

break;

default :
fprintf(stderr, "\nusage: %s pathname\n", argv[0]);
fprintf(stderr, " -or-");
fprintf(stderr, "\n %s < pathname\n", argv[0]);
exit(1);

/* initialize */
checksum_init(&chksum);
[* calculate checksum for all data in file */

while (len = (fread(buf, 1, BUFFER_SZ, fptr)))
checksum_add(&chksum, buf, len);

if (Ifeof(fptr))
fprintf(stderr, "\nerror reading %s (%s)\n", path, strerror(errno));
if (fptr != stdin)

fclose(fptr);
;}xit(l);

if (fptr != stdin)
fclose(fptr);
chksum_to_file = chksum;
/* ensure CHECKSUM32 is written to Oasis file in LITTLE_ENDIAN byte order */
#ifdef BIG_ENDIAN_MACHINE
CHG_ENDIAN(chksum_to_file);
#endif

/* this is the checksum value that should be the last 4 bytes in the file */
printf("chksum_to_file = 0x%08x\n", chksum_to_file);

exit(0);
}

© SEMI 2003 38 SEMI Draft Document 3626 2003/04/23

/psemr

APPENDIX 2
OASIS Standard Properties

A2-1 File-Level Standard Properties

A2-1.1 Any file-level standard properties must appear immediately afte8 TART record in an OASIS file. Use of
file-level standard properties is optional—OASIS processors may omit/ignore any or all of them.

A2-1.2S_MAX_SIGNED_INTEGER_WIDTH

This property declares the maximum number of bytes required to represeigrat-integein the file, after all
continuation bits have been removed and the integer has been expressed in twos-complement form. Its value list con-
sists of a singlensigned-integer

A2-1.3S_MAX_UNSIGNED_INTEGER_WIDTH
This property declares the maximum number of bytes required to represemisggned-integein the file, after all
continuation bits have been removed. Its value list consists of a simgjgmed-integer

A2-1.4S_MAX_STRING_LENGTH

This property declares the maximum number of bytes permitted in any string within the file. Its value list consists of
a singleunsigned-integer

A2-1.5S_POLYGON_MAX_VERTICES

This property declares the maximum number of vertices permitted in any polygon within the file, including any
implicit vertices, but counting the initial vertex only once. Its value list consists of a simgjgned-integer

A2-1.6S_PATH_MAX_VERTICES

This property declares the maximum number of vertices permitted in any path within the file. Its value list consists of
a singleunsigned-integer

A2-1.7S_TOP_CELL

This property is used to declare the name of the “top cell” of a cell hierarchy. Its value list consists ofra single
string. It may be repeated if more than one distinct cell hierarchy exists within the OASIS file in which it appears.

A2-1.8S_BOUNDING_BOXES_AVAILABLE

This property indicates whether or not S BOUNDING_BOX properties app&&lihNAME records. Its value

list consists of a singlensigned-integerA value of 0 means that S_ BOUNDING_BOX properties are not provided.
A value of 1 means that at least some S_BOUNDING_BOX properties are provided. A value of 2 means that an
S_BOUNDING_BOX property is provided for eveBELLNAME record.

SEMI Draft Document 3626 2003/04/23 39 © SEMI 2003

/psemr

A2-2 Cell-Level Standard Properties

A2-2.1 Any cell-level standard properties must appear immediately after the corresp@ilthdNAME record in
an OASIS file. Use of cell-level standard properties is optional—OASIS processors may omit/ignore any or all of
them.

A2-2.2S_BOUNDING_BOX

This property may occur once after e@BLLNAME record, and declares the bounding box of that cell. Its value
list consists of the following 5 fields: <flags> <lower-left-x> <lower-left-y> <width> <height>. The lower-left-x and
lower-left-y fields aresigned-integersepresenting the lower-left corner of the cell’s bounding box. The width and
height fields areinsigned-integersepresenting the width and height of the cell’s bounding box. The bounding box
should be calculated to cover the full extent of all geometric figures and text element (x,y) points within that cell and
all of its subcells after a full expansion of any hierarchy beneath the cell.

The flags field is annsigned-integeiOnly the least-significant 3 bits are presently defined, and have the following
meanings:
flags.bit.0: O = bounding box is known
1 = bounding box is unknown
flags.bit.1: 0 = bounding box is non-empty
1 = bounding box is empty
flags.bit.2: 0 = bounding box depends on no external cells
1 = bounding box depends on one or more external cells

A2-2.3S_CELL_OFFSET

This property may occur once after e&BLLNAME record. Its value list consists of a singlesigned-integer
which declares the byte offset from the beginning of the file (byte 0) to where the corresgiiadingecord
appears in the file. An offset value of O denotesxdarnalcell, with no correspondinGELL record in the same
OASIS file.

A2-3 Element-Level Properties

A2-3.1S_GDS_PROPERTY

This property is intended exclusively for compatibility with GDSII Stream properties. It may occur one or more times
after any element within @ELL definition. Its value list contains exactly two values in sequence: <attribute>, an
unsigned-integerand <propvalue-string>,kastring These values correspond to GDSII Stream PROPATTR and
PROPVALUE records, respectively.

© SEMI 2003 40 SEMI Draft Document 3626 2003/04/23

/psemr

NOTICE : SEMI makes no warranties or representations as to the suitability of the standards set forth herein for any
particular application. The determination of the suitability of the standard is solely the responsibility of the user.

Users are cautioned to refer to manufacturer’s instructions, product labels, product data sheets, and other relevant lit-
erature, respecting any materials or equipment mentioned herein. These standards are subject to change without
notice.

By publication of this standard, Semiconductor Equipment and Materials International (SEMI) takes no position
respecting the validity of any patent rights or copyrights asserted in connection with any items mentioned in this stan-
dard. Users of this standard are expressly advised that determination of any such patent rights or copyrights, and the
risk of infringement of such rights are entirely their own responsibility.

Copyright © SEMI® (Semiconductor Equipment and Materials Interna-
tional), 3081 Zanker Road, San Jose, CA 95134. Reproduction of the contents in
whole or in part is forbidden without express written consent of SEMI.

SEMI Draft Document 3626 2003/04/23 41 © SEMI 2003

	1 Purpose
	1.1 The purpose of this specification is to define an interchange and encapsulation format for hi...
	1.2 Background—In the fall of 2001, SEMI’s Data Path Task Force formed a working group to define ...

	2 Scope
	2.1 This format is designed primarily to encapsulate hierarchical mask layout for interchange bet...
	2.2 This format is designed to be both hardware- and software-independent.

	3 Limitations
	3.1 Use of extension records such as XNAME, XELEMENT, and XGEOMETRY may impair interoperability b...

	4 Referenced Standards
	4.1 IEEE Standards IEEE 754-1985 - IEEE Standard for Binary Floating- Point Arithmetic
	4.2 ISO Standards ISO-646-IRV - “US-ASCII” Character Set ISO-3309 - Information technology—Teleco...
	4.3 IETF Standards RFC 1951 - DEFLATE Compressed Data Format Specification version 1.3

	5 Terminology
	5.1 Abbreviations and Acronyms
	5.2 Definitions
	5.3 Symbols

	6 OASIS BASICS
	6.1 An OASIS file is a sequence of bytes divided into records. The length of a record is discerni...
	6.2 An OASIS file has the following overall syntax (using the modified BNF notation described in ...
	6.3 An OASIS file may represent a complete layout hierarchy, a portion of a layout hierarchy, or ...
	6.4 The <magic-bytes> element is a sequence of 13 ASCII characters: “%SEMI-OASIS<CR><NL>” where <...
	6.5 EXCEPTION HANDLING: OASIS processors should treat any deviation from the syntax presented in ...

	7 DATA CONSTRUCTS
	7.1 BYTES
	7.2 INTEGERS
	7.3 REALS
	7.4 STRINGS
	7.5 DELTAS
	7.6 REPETITIONS
	7.7 POINT LISTS
	7.8 PROPERTY VALUES

	8 CELL REFERENCING
	8.1 As in GDSII Stream, cells in OASIS are identified by name. The CELL record not only introduce...

	9 LAYERS, DATATYPES, AND TEXTTYPES
	9.1 As in GDSII Stream, every <geometry> has associated with it a layer number and a datatype num...

	10 MODAL VARIABLES
	10.1 For compaction purposes, selected data elements in many OASIS records may be implicitly spec...
	10.2 Modal variable xy-mode governs the interpretation of the x and y fields for those related re...
	10.3 EXCEPTION HANDLING: An OASIS record which implicitly references a modal variable which is in...

	11 RECORDS
	11.1 The basic unit of information in an OASIS file is a record. A record consists of a single un...
	11.2 The CBLOCK record is a special case since it encapsulates a series of ordinary records in by...
	11.3 Most records have an implicit length—the record must be parsed and decoded in order to deter...
	11.4 EXCEPTION HANDLING: OASIS processors should treat the nesting of a CBLOCK record within anot...

	12 PAD RECORD
	12.1 A PAD record provides a simple way to reserve space within an OASIS file. It has the followi...
	12.2 PAD records may be inserted between any other two records.
	12.3 EXCEPTION HANDLING: The presence of a PAD record before the START record or after the END re...

	13 START RECORD
	13.1 A START record identifies the beginning of an OASIS file, and immediately follows the <magic...
	13.2 The version-string is an a-string whose value is “1.0” for this version of the OASIS specifi...
	13.3 The unit declaration is a positive real number which specifies the global precision of the O...
	13.4 offset-flag (an unsigned-integer) is 0 when the table-offsets structure is stored in the STA...
	13.5 The table-offsets structure consists of 6pairs of unsigned-integers. Each pair consists of a...
	13.6 Each of the flag fields is either 1, indicating strict mode, or 0, indicating non-strict mod...
	13.7 In non-strict mode, records of the corresponding type may occur anywhere in the file, even i...
	13.8 In strict mode, all records of the corresponding type (plus any associated PROPERTY records)...
	13.9 When a given strict mode table has been encapsulated within one or more CBLOCK records, the ...
	13.10 EXCEPTION HANDLING: The absence of a START record as the first record in an OASIS file shou...

	14 END RECORD
	14.1 An END record identifies the end of the OASIS file. The END record must be the last record i...
	14.2 The presence of the table-offsets structure is governed by offset-flag in the START record (...
	14.3 validation-scheme is an unsigned-integer which selects the validation scheme used, and valid...
	14.4 CRC32 Validation
	14.5 CHECKSUM32 Validation
	14.6 EXCEPTION HANDLING: OASIS processors should treat the absence of an END record in an OASIS f...

	15 CELLNAME RECORD
	15.1 A CELLNAME record associates the name of a cell with a unique reference number. This allows ...
	15.2 cellname-string is an n-string which holds the cell name. The reference-number is an unsigne...
	15.3 Two standard properties, S_BOUNDING_BOX and S_CELL_OFFSET (described in section A2-2 on page...
	15.4 Record types ‘3’ and ‘4’ may not both be used in the same OASIS file.
	15.5 EXCEPTION HANDLING: The appearance of two CELLNAME records in the same file with the same nu...

	16 TEXTSTRING RECORD
	16.1 A TEXTSTRING record associates a text string with a unique reference number. This allows TEX...
	16.2 text-string is an a-string which holds the text string. The reference-number is an unsigned-...
	16.3 Record types ‘5’ and ‘6’ may not both be used in the same OASIS file.
	16.4 EXCEPTION HANDLING: The appearance of two TEXTSTRING records in the same file with the same ...

	17 PROPNAME RECORD
	17.1 A PROPNAME record associates the name of a property with a unique reference number. This all...
	17.2 propname-string is an n-string which holds the property name. The reference-number is an uns...
	17.3 Record types ‘7’ and ‘8’ may not both be used in the same OASIS file.
	17.4 EXCEPTION HANDLING: The appearance of two PROPNAME records in the same file with the same nu...

	18 PROPSTRING RECORD
	18.1 A PROPSTRING record associates a property string with a unique reference number. This allows...
	18.2 prop-string is an a-string, b-string , or n-string which holds the property string, dependin...
	18.3 Record types ‘9’ and ‘10’ may not both be used in the same OASIS file.
	18.4 EXCEPTION HANDLING: The appearance of two PROPSTRING records in the same file with the same ...

	19 LAYERNAME RECORD
	19.1 A LAYERNAME record provides a means of mapping numeric (layer,datatype) and (layer,texttype)...
	19.2 Record type ‘11’ maps a range of (layer,datatype) numbers to a layer name, and record type ‘...
	19.3 layername-string is an n-string containing the layer name.
	19.4 Each of the interval fields consists of an unsigned-integer denoting the interval type, foll...
	19.5 LAYERNAME records may be repeated for the same layer name. The complete mapping for a layer ...

	20 CELL RECORD
	20.1 A CELL record introduces a cell definition. It has the following format:
	20.2 In record type ‘13’, reference-number is an unsigned-integer referring to a CELLNAME record ...
	20.3 All subsequent records in the file up to the next CELL, END, or <name> record are considered...
	20.4 EXCEPTION HANDLING: Use of a reference-number for which there is no corresponding CELLNAME r...

	21 XYABSOLUTE & XYRELATIVE RECORDS
	21.1 The XYABSOLUTE and XYRELATIVE records control the value of modal variable xy-mode, which in ...
	21.2 When each CELL record is encountered, modal variable xy-mode is set to absolute, and related...
	21.3 In absolute mode, explicit x and y values, when present, are used directly as the actual (x,...
	21.4 In relative mode, explicit x and y values, when present, are interpreted as relative displac...
	21.5 In both absolute and relative modes, when an x or y value is not explicitly present in the r...
	21.6 The interpretation of point-lists and repetitions does not depend on absolute or relative mo...

	22 PLACEMENT RECORD
	22.1 A PLACEMENT record describes one or more placements of the referenced cell within the curren...
	22.2 In record type ‘17’, placement-info-byte contains the bit pattern ‘CNXYRAAF’.
	22.3 In record type ‘18’, placement-info-byte contains the bit pattern ‘CNXYRMAF’.
	22.4 When C=1, the cell reference is explicit, in which case N=1 means that reference-number (an ...
	22.5 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	22.6 R is 1 if repetition is present. F=1 indicates reflection (or flip) about the x-axis; F=0 in...
	22.7 In record type ‘17’, magnification is 1.0 and rotation is a counterclockwise integral multip...
	22.8 In record type ‘18’, magnification and rotation are reals; angle is dimensioned in degrees, ...
	22.9 Each successive PLACEMENT record updates all placement-related modal variables.
	22.10 EXCEPTION HANDLING: Use of a reference-number for which there is no corresponding CELLNAME ...

	23 PLACEMENT TRANSFORM REPRESENTATION
	23.1 EDA applications generally define a placement transform as a 3x3 matrix:
	23.2 When repetition is present, the above transform is that of the first element of the repetiti...

	24 TEXT RECORD
	24.1 A TEXT record represents a text element, consisting of an (x,y) coordinate point and an anno...
	24.2 The text-info-byte contains the bit pattern ‘0CNXYRTL’.
	24.3 When C=1, the text reference is explicit, in which case N=1 means that reference-number (an ...
	24.4 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	24.5 R is 1 if repetition is present. L is 1 if textlayer-number is present. T is 1 if texttype-n...
	24.6 Each successive TEXT record updates all text-related modal variables.
	24.7 EXCEPTION HANDLING: Use of a reference-number for which there is no corresponding TEXTSTRING...

	25 RECTANGLE RECORD
	25.1 A RECTANGLE record represents a rectangular figure whose edges are parallel to the x- and y-...
	25.2 The rectangle-info-byte contains the bit pattern ‘SWHXYRDL’.
	25.3 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	25.4 S is 1 if the rectangle is a square. In this case, H must be 0, and width, if present, is us...
	25.5 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	25.6 Each successive RECTANGLE record updates all rectangle-related modal variables. (When S=1, b...
	25.7 EXCEPTION HANDLING: Implicit use of modal variables geometry-w, geometry-h, layer, or dataty...

	26 POLYGON RECORD
	26.1 A POLYGON record represents an arbitrary polygon figure. It has the following format:
	26.2 The polygon-info-byte contains the bit pattern ‘00PXYRDL’.
	26.3 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	26.4 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	26.5 P is 1 if point-list is present. Otherwise, the value of modal variable polygon-point-list i...
	26.6 Each successive POLYGON record updates all polygon-related modal variables.
	26.7 EXCEPTION HANDLING: Polygons with fewer than three vertices should be treated as fatal error...

	27 PATH RECORD
	27.1 A PATH record represents an arbitrary path figure, which may be thought of as a polyline wit...
	27.2 The path-info-byte contains the bit pattern ‘EWPXYRDL’.
	27.3 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	27.4 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	27.5 P is 1 if point-list is present. Otherwise, the value of modal variable path-point-list is u...
	27.6 W is 1 if half-width (an unsigned-integer) is present; if absent, the half-width value assum...
	27.7 E is 1 if extension-scheme is present. Otherwise, extension-scheme, start-extension, and end...
	27.8 When present, extension-scheme (an unsigned-integer) contains bit pattern ‘0000SSEE’. The SS...
	27.9 Each successive PATH record updates all path-related modal variables.
	27.10 Various types of degenerate paths, where the half-width=0, the path traces back on itself, ...
	27.11 EXCEPTION HANDLING: Implicit use of modal variables path-halfwidth, path-point-list, path-s...

	28 TRAPEZOID RECORD
	28.1 A TRAPEZOID record represents a trapezoid figure (a polygon with four vertices having at lea...
	28.2 The trap-info-byte contains bit pattern ‘OWHXYRDL’.
	28.3 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	28.4 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	28.5 delta-a and delta-b are 1-deltas, and are both present in record type ‘23’. In record type ‘...
	28.6 O is 0 if the trapezoid is horizontally-oriented, with top (PQ) and bottom (RS) sides parall...
	28.7 O is 1 if the trapezoid is vertically-oriented, with left (PQ) and right (RS) sides parallel...
	28.8 Each successive TRAPEZOID record updates all trapezoid-related modal variables.
	28.9 EXCEPTION HANDLING: For any trapezoid, deltas of sufficient magnitude to cause segments PR a...

	29 CTRAPEZOID RECORD
	29.1 A CTRAPEZOID record represents a trapezoid figure in a compact form by assuming that two sid...
	29.2 The ctrapezoid-info-byte contains the bit pattern ‘TWHXYRDL’.
	29.3 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	29.4 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	29.5 T is 1 if ctrapezoid-type (an unsigned-integer) is present; otherwise it assumes the value o...
	29.6 The triangle, rectangle, and square forms are provided for compactness and for compatibility...
	29.7 Each successive CTRAPEZOID record updates all ctrapezoid-related modal variables with the fo...
	29.8 EXCEPTION HANDLING: For types 0-3, (w < h) should be treated as a fatal error. For types 4-7...

	30 CIRCLE RECORD
	30.1 A CIRCLE record represents a circular figure. It has the following format:
	30.2 The circle-info-byte contains the bit pattern ‘00rXYRDL’.
	30.3 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	30.4 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	30.5 Each successive CIRCLE record updates all circle-related modal variables.
	30.6 EXCEPTION HANDLING: Implicit use of modal variables circle-radius, layer, or datatype when t...

	31 PROPERTY RECORD
	31.1 A property is an annotation element consisting of a name plus an optional list of values, su...
	31.2 Record type ‘29’ provides a compact way to specify a duplicate copy of the most-recently-see...
	31.3 The prop-info-byte contains the bit pattern ‘UUUUVCNS’.
	31.4 When C=1, the property name reference is explicit, in which case N=1 means that reference-nu...
	31.5 When V=0, values of UUUU from 0 to 14 indicate the number of <property-value> fields which a...
	31.6 When S=1, a standard property is indicated; when S=0, a non-standard or user property is ind...
	31.7 Each successive PROPERTY record updates modal variables last-property-name and last-value-list.
	31.8 In general, PROPERTY records directly follow the record with which they are associated. PROP...
	31.9 PROPERTY records do not associate with CBLOCK or PAD records. Instead, property association ...
	31.10 EXCEPTION HANDLING: Implicit use of modal variables last-property-name or last-value-list w...

	32 XNAME RECORD
	32.1 An XNAME record allows backward-compatible extension of OASIS <name> records. It associates ...
	32.2 xname-string is user-defined as an a-string, b-string, or n-string which holds the name. xna...
	32.3 Record types ‘30’ and ‘31’ may not both be used in the same OASIS file.
	32.4 EXCEPTION HANDLING: The appearance of two XNAME records in the same file with the same refer...

	33 XELEMENT RECORD
	33.1 An XELEMENT record allows backward-compatible extension of OASIS <element> records. It has t...
	33.2 xelement-attribute is an unsigned-integer providing the ability to associate the XELEMENT wi...

	34 XGEOMETRY RECORD
	34.1 An XGEOMETRY record allows backward-compatible extension of OASIS <geometry> records. It has...
	34.2 The xgeometry-info-byte contains the bit pattern ‘000XYRDL’.
	34.3 R is 1 if repetition is present. L is 1 if layer-number is present. D is 1 if datatype-numbe...
	34.4 x and y are signed-integer coordinates representing either the absolute or the relative (x,y...
	34.5 xgeometry-attribute is an integer providing the ability to associate the XGEOMETRY with a us...
	34.6 Each successive XGEOMETRY record updates all XGEOMETRY-related modal variables.
	34.7 EXCEPTION HANDLING: Implicit use of modal variables layer, or datatype when they are in the ...

	35 CBLOCK RECORD
	35.1 A CBLOCK record provides a mechanism for embedding compressed data within the structure of a...
	35.2 comp-type is an unsigned-integer describing the type of compression used for this record. un...
	35.3 When comp-type=0, the compression scheme is the lossless DEFLATE Compressed Data Format, Ver...
	35.4 The START, END, CELL, and nested CBLOCK records may not be stored within a compressed record...
	35.5 EXCEPTION HANDLING: During the reading of a CBLOCK record, it is a fatal error if the number...

	36 DETAILED BNF SYNTAX
	36.1 This specification uses a modified Backus-Naur Form (BNF) notation to describe OASIS file sy...
	36.2 The OASIS syntax is detailed as follows:

	APPENDIX 1 CALCULATION OF VALIDATION SIGNATURES
	APPENDIX 2 OASIS Standard Properties

