

C U S T O M ER E D U C A T I O N S E R V I C E S

Design Compiler 1
Workshop

Lab Guide
10-I-011-SLG-013 2007.03

Synopsys Customer Education Services
700 East Middlefield Road
Mountain View, California 94043

Workshop Registration: 1-800-793-3448

www.synopsys.com

Lab 4

Timing and Area Constraints Lab 4-2
Synopsys Design Compiler 1 Workshop

Copyright Notice and Proprietary Information
Copyright 2007 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation
may be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:
“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Cadabra, CATS, CRITIC, CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM,
HSPICE, iN-Phase, in-Sync, Leda, MAST, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler,
PrimeTime, SiVL, SNUG, SolvNet, System Compiler, TetraMAX, VCS, and Vera are registered trademarks
of Synopsys, Inc.

Trademarks (™)
Active Parasitics, AFGen, Apollo, Astro, Astro-Rail, Astro-Xtalk, Aurora, AvanTestchip, AvanWaves, BOA, BRT, ChipPlanner,
Circuit Analysis, Columbia, Columbia-CE, Comet 3D, Cosmos, CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE,
Cyclelink, DC Expert, DC Professional, DC Ultra, Design Advisor, Design Analyzer, Design Vision, DesignerHDL, DesignTime,
Direct RTL, Direct Silicon Access, Discovery, Dynamic Model Switcher, Dynamic-Macromodeling, EDAnavigator, Encore,
Encore PQ, Evaccess, ExpressModel, Formal Model Checker, FoundryModel, Frame Compiler, Galaxy, Gatran, HANEX, HDL
Advisor, HDL Compiler, Hercules, Hercules-II, Hierarchical Optimization Technology, High Performance Option, HotPlace,
HSIM plus, HSPICE-Link, i-Virtual Stepper,iN-Tandem, Integrator, Interactive Waveform Viewer, Jupiter, Jupiter-DP, JupiterXT,
JupiterXT-ASIC, JVXtreme, Liberty,Libra-Passport, Libra-Visa, Library Compiler, Magellan, Mars, Mars-Rail, Mars-Xtalk, Medici,
Metacapture, Milkyway,ModelSource, Module Compiler, Nova-ExploreRTL, Nova-Trans, Nova-VeriLint, Orion_ec, Parasitic
View, Passport, Planet, Planet-PL, Planet-RTL, Polaris, Power Compiler, PowerCODE, PowerGate, ProFPGA, ProGen,
Prospector,Raphael, Raphael-NES, Saturn, ScanBand, Schematic Compiler, Scirocco, Scirocco-i, Shadow Debugger, Silicon
Blueprint, Silicon Early Access, SinglePass-SoC, Smart Extraction, SmartLicense, Softwire, Source-Level Design, Star-RCXT,
Star-SimXT, Taurus, TimeSlice, TimeTracker, Timing Annotator, TopoPlace, TopoRoute, Trace-On-Demand, True-Hspice,
TSUPREM-4, TymeWare,VCSExpress, VCSi,VerificationPortal, VFormal,VHDLCompiler,VHDLSystem Simulator, VirSim, and
VMC
are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Document Order Number: 10-I-011-SLG-013
Design Compiler 1 Lab Guide

Lab 4

Timing and Area Constraints Lab 4-3
Synopsys Design Compiler 1 Workshop

Setup and
Synthesis Flow 2

After completing this lab, you should be able to:

 Update a DC setup file

 Navigate the schematic in Design Vision

 Take a design through the basic synthesis steps

 Visit SolvNet to browse the user manual for Design
Vision

Lab Duration:
50 minutes

Learning Objectives

Lab 4

Timing and Area Constraints Lab 4-4
Synopsys Design Compiler 1 Workshop

Lab Flow

Follow the detailed step-by-step Lab Instructions on the following pages to
perform the steps highlighted in this flow:

Invoke Design Vision and
verify the setup

Read the rtl/TOP.vhd file.
Explore design’s symbol and

schematic views.

Constrain the design using
scripts/TOP.con

Update the setup file
.synopsys_dc.setup in the lab2

directory

Compile the design

Generate a constraint report to
look for any timing or area

violations

Save the compiled design into
mapped/TOP.ddc

and exit DesignVision

Explore SolvNet resources

Lab 4

Timing and Area Constraints Lab 4-5
Synopsys Design Compiler 1 Workshop

Lab Instructions

Task 1. Update the setup file

1. Make the lab2 directory your working directory.

UNIX% cd lab2

2. You are provided with a .synopsys_dc.setup file. Incorporate the
following using a text editor of your choice:

 The technology library file name is ../ref/db/sc_max.db

 The symbol library file name is ../ref/db/sc.sdb

 The directory scripts contains the constraint file to be sourced

3. Take a look at the other commands in the rest of the file. Notice that the
variables which you have edited will be echoed upon tool start-up.

4. Save the .synopsys_dc.setup file, and Quit the editor.

Lab 4

Timing and Area Constraints Lab 4-6
Synopsys Design Compiler 1 Workshop

Task 2. Invoke Design Vision

1. Invoke Design Vision from the lab2 directory.

unix% pwd
unix% design_vision

2. View the Log Area at the bottom of the GUI.

This area displays all the executed commands, their results, and shows any
error messages.

Scroll to the top of the log messages.

You should see the values of the four key .synopsys_dc.setup
variables echoed here, followed by the command gui_start, which invokes
the GUI.

Log Area

Command
input area /

prompt

Logical
hierarchy

viewer

Area for
more

windows

Tool bar

Lab 4

Timing and Area Constraints Lab 4-7
Synopsys Design Compiler 1 Workshop

3. Choose menu File Setup and verify that the libraries are set up correctly.

Question 1. What is the Link library?

..

Question 2. What is the Target library?

..

Question 3. What is the Symbol library?

..

Note: If the libraries are called your_library.db, (instead of
sc_max.db) this indicates you invoked DC from the wrong
Unix directory. Exit the GUI (File Exit OK, or type
exit at the command prompt, and choose OK when
prompted). Make sure your current directory is lab2 and
re-invoke Design Vision.

Note: Check your answers against the Answers/Solutions section
at the end of this lab, and fix your setup file accordingly. If
you are stuck, compare your setup file with that provided in
the .solutions directory.
If you edit the .synopsys_dc.setup file it is
recommended that you exit Design Vision and re-invoke it.

4. Select the icon to the right of the Search path field. This opens up
the Set Search Path window, which shows an expanded list of each search
path directory. Make sure that the first four entries at the top are as follows:

.

/<tool_installation_directory>/libraries/syn

/<tool_installation_directory>/dw/syn_ver

/<tool_installation_directory>/dw/sim_ver

Note: If you do NOT see the above directories, this implies that
you have over-written the default setting of the search path
variable, instead appending to it. Exit the GUI (File Exit
 OK, or type exit at the command prompt, and choose OK
when prompted). Correct the .synopsys_dc.setup file,
re-invoke Design Vision and verify the new settings.

Lab 4

Timing and Area Constraints Lab 4-8
Synopsys Design Compiler 1 Workshop

Question 4. What user directories have been added to the Search path?

..

5. Click Cancel to close the Application Setup window.

6. In the original Unix window from which you invoked Design Vision (the shell
interface), type the following at the DC prompt to confirm the library setup
variables, the search path and the user as well as default aliases.

Note: Command line editing allows for command, option, variable
and file completion. Type a few letters and then hit the
[Tab] key.

printvar target_library

printvar link_library

printvar symbol_library

printvar search_path

alias

Lab 4

Timing and Area Constraints Lab 4-9
Synopsys Design Compiler 1 Workshop

Task 3. Read the Design into DC Memory

Design Compiler can read VHDL, Verilog, as well as SystemVerilog RTL files.

1. Click on the Read button at the top left of the GUI (or File Read).

2. In the dialog box that appears, double-click on the directory rtl/, and then
again on TOP.vhd.

In the “Logical Hierarchy” window on the left side of the GUI (you may need
to widen the window), there is now an icon for TOP, which is the top-level
design name. There are also icons for the lower-level instances or cells:
I_FSM, I_DECODE, and I_COUNT.

3. Select TOP (single click with left mouse button), and look at the lower right
corner to verify the selection.
You should see Design: TOP. This ensures that your current design is
properly set to the top-level design.

4. Select File Link Design OK to link the design and resolve all references.
You should not see any warning or error messages in the Log Area.

5. Save the unmapped design in ddc fromat. Type the following in the Command
Input Area or in the Unix window in in which you invoked Design Vision:

write –hier –f ddc –out unmapped/TOP.ddc

6. You can also type the following non-GUI dc_shell commands to see a list of
designs and libraries in memory.

list_designs

list_libs

Task 4. Explore Symbol and Schematic Views

1. Make sure that the lower right corner still shows that Design: TOP is selected.
If not, select TOP with a single click of the left mouse button.

2. Select the Symbol View by clicking the icon in the tool bar. You will
see a block called TOP, with its input and output ports. This is referred to as
the symbol view of the design, as indicated in the upper left corner of the new
Window.

3. Now look at theSchematic View by clicking the icon in the tool bar.
The schematic of TOP contains instantiations of FSM, DECODE and COUNT.

Lab 4

Timing and Area Constraints Lab 4-10
Synopsys Design Compiler 1 Workshop

4. You now have three windows open in the GUI: The Hierarchical, Symbol and
Schematic view windows. Maximize one of the windows. The other two
windows are now also maximized, but are “behind” the window that you
maximized. You can bring diferent windows to the foreground by selecting
the appropriate tab below the view window. (You will learn how to “zoom”
the image in the next task.)

5. Minimize the view windows or select the left-most Hierarchy tab to
make the Hierarchical window visible.

6. Explore TOP by visiting the Symbol and Schematic Views of the various
subdesigns by selecting each design in the Logical Hierarchy window and

clicking on the and icons respectively.

Because you have not compiled these designs yet, you will not see gates from
the target technology library. You will see GTECH components. GTECH
components are generic Boolean gates and registers that represent the generic,
non-technology specific functionality of a design.

Task 5. Explore the Mouse Functions

1. Click and hold the right mouse button in a schematic view to see the
available mouse functions.

2. Select Zoom Fit All with the left mouse button to maximize the view. Now
repeat Step 1 and select Zoom In Tool. With the left mouse button click and
drag the rectangular area you want to zoom into. Press the [ESC] key to exit
out of the ZOOM mode. Return to Zoom Fit All or Zoom Out Tool by using
the appropriate mouse function.

3. A quicker way to zoom in and out is using “strokes”. Press and hold the
middle mouse button on the lower left corner of the rectangle you want to
zoom into, then move the mouse while still pressed to the upper right corner.
Only then release the middle mouse button. You just performed a zoom in
gesture or stroke. By pressing the middle mouse button in place, a menu will
appear with the defined strokes. Experiment with some more strokes.

4. Close all window views except the TOP schematic window.

5. This time switch to the Schematic View of DECODE by double clicking on the
green block labelled DECODE in the TOP schematic.

Note the cell name I_DECODE in the lower right corner of Design Vision.
This signifies that I_DECODE is the Current Instance.

Go back to the TOP schematic view by clicking on the up-arrow
button from the menu (top banner).

Lab 4

Timing and Area Constraints Lab 4-11
Synopsys Design Compiler 1 Workshop

Repeat this step for FSM, and COUNT.

6. To select multiple objects, experiment with using your left mouse button and
the CTRL key. Use the left mouse button to select the first object, then left
mouse button and CTRL key to select additional objects. Selected objects
are highlighted in white. Click in any black area to un-select the selected
objects.

Recall the Basic Steps in Synthesis Flow
The four steps after “read” will be performed in the upcoming tasks:

 Read and translate RTL code (read_vhdl/read_verilog)

 Constrain the design (source a constraints file)

 Synthesize the design (compile)

 Generate reports (report_*)

 Save the resulting netlist (write)

Task 6. Constrain TOP with a Script file

1. Open the Symbol view for TOP.

You may also view the Schematic view but the Symbol view gives you a
clearer overview of your port names.

2. Type the following at the command prompt on the bottom of the Design
Vision window. Remember to take advantage of command completion by
hitting the tab key.

source TOP.con

Note: If the source command gives an error message, make sure
that the ./scripts directory has been appended to the
search_path variable in the .synopsys_dc.setup file, or,
type source scripts/TOP.con if you do not want to
re-invoke the Design Vision.

This will execute a script file, which constrains the TOP design. You will not
be able to “see” the constraints in the view window, but they are there. In
upcoming labs you will learn how to generate reports to verify constraints that
have been applied to a design.

The message “Defining new variable 'lib_name' “ is expected – this is a
user-defined variable that is created in the constraints file to simplify the script
– it does not indicate any changes to the target_ or link_library
variables that you defined.

Lab 4

Timing and Area Constraints Lab 4-12
Synopsys Design Compiler 1 Workshop

Task 7. Compile or Map to Vendor-Specific Gates

1. To compile the design, type the following command at the command prompt
on the bottom of the Design Vision window:

compile

Monitor the log as compile progresses. You will see various tables for the
different optimization phases of compile. The “AREA” column indicates the
design size. The “WORST NEG SLACK” column indicates by how much the
critical or worst path in the design is violating, relative to its constraint
(Actual delay – Expected delay). The “TOTAL NEG SLACK” is the sum of
all the violating path slacks. When the optimization reaches a point of
“diminishing returns”, or, the slack numbers reach zero, which means that
there are no violating timing paths in the design, the compile ends.

2. Explore the Schematic View of DECODE, FSM and COUNT. You will now
see gates from the target technology library.

Use the right mouse zoom functions, the middle mouse button “strokes”, or

the buttons on the command bar to be able to see the details of
the design.

Task 8. Generate Reports and Analyze Timing

1. Go to the Symbol View of TOP.

2. At the design_vision-xg-t prompt, type: rc

rc is an alias that was specified in the .synopsys_dc.setup file. It
executes the following command:

report_constraint -all_violators

If there are any timing and/or area violations the report summarizes them.

You can also get more detailed timing information by generating a timing
report: rt

By default, report_timing shows the timing of the critical path.

Record the following information:

Worst Timing Violation: Slack (VIOLATED) ________________

3. Generate an area report, ra, and record the following:

Total Area: ________________

4. Go back to the Schematic View of TOP.

Lab 4

Timing and Area Constraints Lab 4-13
Synopsys Design Compiler 1 Workshop

5. Choose menu Highlight Critical Path (CTRL-H).

The critical path, (the path with the largest violation), will be highlighted.
Push in and out of the hierarchy to follow this critical path.

NOTE: The highlighted path should agree with the timing report path.

To undo the highlighting select:

Highlight Clear All (CTRL-M).

6. Locate the histogram buttons at the top of the window.
Hover your mouse over the middle button – a “tool hint” should display
“Create endpoint slack histogram”.

7. Click on the Create endpoint slack histogram button, and in the dialog box
that appears, select OK.

You will see a histogram window displaying several “bins”. Each bin
represents a number of timing paths. You can click on the bins, and Design
Compiler will list some details of the paths contained in this bin (Timing
Slack and Endpoint).

A “green” bin indicates that all timing paths within that bin meet timing. A
“red” bin indicates violating paths.

When a bin is selected, it turns “yellow”

8. Select one of the bins (left mouse button), and on the right side, select one of
the endpoints (left mouse button).

9. You can show the path to the selected endpoint in the schematic, as follows:

First select the left-most “Create PathSchematic of Selected
Logic” button – this shows the endpoint. Now select the middle “Add Paths
to Path Schematic” button – this adds the path leading up to the endpoint.
You can optionally select the right-most “Add Fanin/Fanout to Path
Schematic” button to include fan-ins or fan-outs along the path.

Task 9. Save the Optimized Design

After compile, or after any major steps, it is advisable to save the design. The native
Design Compiler XG-mode format is ddc., both for unmapped or mapped (compiled)
designs.

1. Go back to the Symbol View of TOP.

2. Choose menu File Save As.

3. Double click on the mapped/ directory.

4. Enter TOP.ddc in the File name field.

Lab 4

Timing and Area Constraints Lab 4-14
Synopsys Design Compiler 1 Workshop

5. Verify that the Save All Designs in Hierarchy button is selected. This will
save the entire design hierarchy into a single (.ddc) file.

6. Click Save.

You just saved the gate-level netlist (the entire hierarchy) in ‘ddc’ format
under the mapped directory. You can verify that the file was created in the
original Unix window from which you invoked Design Vision,
using ‘ls –l mapped’.

7. Next, select the history tab.

8. Save the command history by selecting the button “Save Contents As” and
specifying the name run_history.tcl into the scripts directory.

Lab 4

Timing and Area Constraints Lab 4-15
Synopsys Design Compiler 1 Workshop

Task 10. Remove Designs and Exit Design Vision

1. Type fr at the command line prompt to remove all designs from DC memory.

Verify that all the icons in Design Vision have been deleted. The “fr” alias
executes the following command:

remove_design -designs

You can also use the pull down menu File Remove All Designs.

2. In the original Unix window from which you invoked Design Vision, type h.

This will list a history of all commands you have executed since you started
Design Vision.

Note: If you unintentionally exit out of Design Vision, you can
recreate everything you did up to that point by executing the
command log file that has been created in your project
working directory (lab2), by doing the following:

unix% cp command.log lab2.log

unix% design_vision –f lab2.log

Note: Alternatively, you can “clean” the run_history.tcl file (if
necessary) and use it instead of the command.log file:

unix% design_vision –f scripts/run_history.tcl

3. Exit from Design Vision. Use the menu sequence File Exit OK, or type
exit at the command prompt, and choose OK when prompted.

Lab 4

Timing and Area Constraints Lab 4-16
Synopsys Design Compiler 1 Workshop

Task 11. Browse Documentation on SolvNet

In this task we will pretend that we want to learn how to use Design Vision to print
a design schematic. We will browse the on-line documentation to find the needed
information.

1. Open a web browser and follow the link from solvnet.synopsys.com to log on
to SolvNet (the link to SolvNet is also available from the Synopsys home
page).

unix% firefox &

2. From the “Main Navigation” menu, click on the “Documentation &
Downloads Center”

3. From the “Documentation & Downloads Center” click “Documentation on
the Web”

4. From the resulting “Documentation” product list, select Design Vision.

Lab 4

Timing and Area Constraints Lab 4-17
Synopsys Design Compiler 1 Workshop

5. In the next window – select the PDF icon to be able to browse or download
the user guide for Design Vision.

6. Once the user guide is open, go to chapter on “Performing Basic Tasks”.
And then to Printing Schematic and Symbol Views.

You do not need to print anything - this is just one example of using the
online documentation.

Task 12. Pre-building the “alib” directory for next labs

Before taking a break (or returning to lecture) execute the following command
from UNIX, which invokes DC and builds an “alib” directory. This step will take a
few minutes. Once completed it will automatically exit DC.

unix% ./make_alib

In some of the upcoming labs you will be invoking the more powerful
compile_ultra synthesis command (instead of compile), which will be
discussed in a later lecture. This command first builds an optimized version of your
technology library file and stores it in a directory called “alib”. This library
optimization step only occurs during the first compile_ultra and can take
several minutes to complete. Once the “alib” directory is built, subsequent compiles
simply use the existing library, and hence run faster. In order to save compile time
in the upcoming labs, you are pre-building the “alib” directory now.

Congratulations – this completes Lab 2.

Lab 4

Timing and Area Constraints Lab 4-18
Synopsys Design Compiler 1 Workshop

Answers / Solutions

Question 1. What is the Link library?

* sc_max.db

Question 2. What is the Target library?

sc_max.db

Question 3. What is the Symbol library?

sc.sdb

Question 4. What user directories have been added to the Search path?

../ref/db ./scripts

Lab 4

Timing and Area Constraints Lab 4-19
Synopsys Design Compiler 1 Workshop

Timing and Area
Constraints

After completing this lab you should be able to:

 Determine the unit of time used in the target library

 Create a Design Compiler timing and area constraints
file based on a provided schematic and specification

 Verify the syntax of the constraints prior to applying them
to a design

 Apply the constraints to a design

 Validate the completeness and correctness of the applied
constraints

Lab Duration:
80 minutes

Learning Objectives

4

Lab 4

Timing and Area Constraints Lab 4-20
Synopsys Design Compiler 1 Workshop

Lab Flow

Follow the step-by-step Lab Instructions on the following pages to perform the
three tasks shown in the lab flow below. Refer to the Design Schematic and Design
Specification sections are needed.

Create an area/timing constraints file
based on the given Design Schematic

and Specification below

Apply the constraints and validate
correctness and completeness

Generate a library report to determine
the units used

Lab 4

Timing and Area Constraints Lab 4-21
Synopsys Design Compiler 1 Workshop

Design Schematic

data2[4:0]

data1[4:0]

sel[1:0]

out1[4:0]

out2[4:0]

out3[4:0]

D
Q
R2

Cin1[4:0]

Cout[4:0]

MY_DESIGN

Cin2[4:0]

D
Q
R3

D
Q
R1

S

T

D
Q
R4

V

COMBO

D
Q
F3

D
Q
F6

clk

Lab 4

Timing and Area Constraints Lab 4-22
Synopsys Design Compiler 1 Workshop

Design Specification

Hint: Read carefully! Some of the specifications are described in “non-DC”
language or terms, requiring translation and calculation to derive the DC constraints.

Clock Definition 1. Clock clk has a frequency of 333.33/ Mhz.

2. The maximum external clock generator delay to the clock

port is 700ps.

3. The maximum insertion delay from the clock port to all
the internal and external register clock pins is 300ps +/-
30ps.

4. The clock period can fluctuate +/- 40ps due to jitter.

5. Apply 50ps of “setup margin” to the clock period.

6. The worst case rise/fall transition time of any clock pin is

120 ps.

Register Setup Time Assume a maximum setup time of 0.2ns for any register in
MY_DESIGN

Input Ports
(sequential logic)

1. The maximum delay from ports data1 and data2 through
the internal input logic S is 2.2ns.

2. The latest F3 data arrival time at the sel port is 1.4ns
(absolute time).

Output Ports
(sequential logic)

1. The maximum delay of the external combo logic at port
out1 is 420ps; F6 has a setup time of 80ps.

2. The maximum internal delay to out2 is 810ps
3. The out3 port has a 400ps setup time requirement with

respect to its capturing register data input.

Combinational Logic The maximum delay from Cin1 and Cin2 to Cout is
2.45ns.

Design Area The maximum design area goal is 540 area units

Lab 4

Timing and Area Constraints Lab 4-23
Synopsys Design Compiler 1 Workshop

Lab Instructions

Task 13. Determine the Target Library’s Time Unit

7. Change to the lab4 UNIX directory.

8. Using a text editor or viewer look at the .synopsys_dc.setup file to answer this
question:

Question 5. What is the target library file name?

...

9. Invoke Design Compiler from the lab4 directory:

UNIX% dc_shell-t

10. Read the above target library file into DC:

dc_shell-xg-t> read_db <target_library_FILE>

11. Determine the library name associated with this library file:

dc_shell-xg-t> list_libs

Question 6. What is the target library name?

...

12. Generate a library report file for the above library:

redirect –file lib.rpt {report_lib <library_NAME>}

13. Exit Design Compiler:

dc_shell-xg-t> exit

14. Use a text editor or viewer to look at the top portion of the lib.rpt file:

Question 7. What is the “Time Unit” of the target library?

...

Lab 4

Timing and Area Constraints Lab 4-24
Synopsys Design Compiler 1 Workshop

15. Exit the text editor or viewer.

Task 14. Create a Timing and Area Constraints File

16. In the scripts directory use a text editor to create a new file called lab4.con.

Question 8. What is the recommended first command for any constraint
file?

...

17. Using the Design Specification and Design Schematic on the previous pages,
as well as the appropriate time unit, enter the required constraints in lab4.con.

Note: You are encouraged to use the Job Aid as needed. You can
also use DC’s help and man commands as needed.

Note: To use DC’s help and man you will need to invoke the
DC shell. It is also possible to access the Design Compiler
“man” pages without invoking DC: The recommended
approach is to create a separate UNIX alias, dcman, for
example:

UNIX% alias dcman “/usr/bin/man –M $SYNOPSYS/doc/syn/man”

UNIX% dcman create_clock

18. After completing the constraints file, check your constraint syntax, and correct
as necessary:

UNIX% dcprocheck scripts/lab4.con

Note: dcprocheck is a syntax checking utility that is included with
the Design Compiler executable. It is available once you are
able to launch Design Compiler – no additional user setup is
required. If used to check a “run script”, you may ignore the
warning “read_verilog is unknown” – dcprocheck
prefers the command read_file –f verilog.

Task 15. Apply Constraints and Validate

19. Invoke the DC shell from the lab4 directory.

20. Read, link and check the design rtl/my_design.v.

21. Apply the constraints file and make any corrections as needed.

Lab 4

Timing and Area Constraints Lab 4-25
Synopsys Design Compiler 1 Workshop

source scripts/lab4.con

22. Check that there are no missing or conflicting key constraints – correct as
needed:

check_timing

23. Check that the constraints were correctly applied to the design – correct as
needed:

report_clock

report_clock –skew

report_port –verbose

24. Write out the applied constraints, in expanded form, to a file for further
checking:

write_script –out scripts/lab4.wscr

25. Ensure that your constraints are complete and correct by perfoming a UNIX
“diff” between your write-script file, and the provided solution file – correct
as needed:

tkdiff scripts/lab4.wscr .solutions/lab4.wscr

OR

diff scripts/lab4.wscr .solutions/lab4.wscr

26. If the above “diff” command uncovers differences which you do not
understand, take a look at .solutions/lab4.con: This file contains comments
explaining how each constraint was determined.

27. Save the design as unmapped/MY_DESIGN.ddc and exit Design Compiler.

Partitioning for Synthesis Lab 5-26
Synopsys 10-I-011-SLG-013

Answers / Solutions

Question 5. What is the target library file name?

sc_max.db

Question 6. What is the target library name?

cb13fs120_tsmc_max

Question 7. What is the “Time Unit” of the target library?

1ns

Question 8. What is the recommended first command for any constraint
file?

reset_design

 Lab 5

Partitioning for Synthesis Lab 5-27
Synopsys Design Compiler 1

Partitioning for better
synthesis results 5

After completing this lab, you should be able to:

 Improve a design’s QoR (Quality of Results = Timing
and/or Area) by repartitioning a design using the group
and ungroup commands

 Perform basic analysis and manipulation using
DesignVision

 Lab 5

Partitioning for Synthesis Lab 5-28
Synopsys Design Compiler 1

Lab Flow

Follow the detailed step-by-step Lab Instructions on the following pages to
perform the steps highlighted in this flow:

Read
mapped/TOP.ddc

Analyze partitioning
Highlight critical path

Remove all designs from
Design Vision

Read
unmapped/TOP.ddc

Repartition using group
and ungroup

Source scripts/TOP.con

Compile

Generate a constraint report
for comparison

Quit Design Vision

 Lab 5

Partitioning for Synthesis Lab 5-29
Synopsys Design Compiler 1

Lab Instructions

Task 16. Analyze Partitioning of a Compiled Design

28. Change to the lab5 directory, then invoke Design Vision.

29. Read and link the design from TOP.ddc located in the mapped directory.

30. Generate the default “End Point Slack” histogram within DesignVision.

Timing Endpoint Slack OK (Accept defaults)

Write down the “Worst” slack amount from the histogram (Look under the
Left most bar (Red = Negative slack) of the histogram:

Max Delay: Largest Violation (Slack) ________________

Write down the Total Cell area by using report_area

Total cell area: ________________

31. Go to the Schematic View of TOP and highlight the critical path.

Push into the subblocks to see the critical path start and end points. Notice
that the path traverses a purely combinational block.

32. In the space below, draw the block diagram for TOP, and indicate where the
critical path start and end points are. Think about which partitioning
guidelines the design violates.

How can you improve the partitioning of this design?

Original Partitioning After Re-Partitioning

33. Remove all the designs from DesignVision memory (File Remove All
Designs in GUI (or) fr from the command line)

 Lab 5

Partitioning for Synthesis Lab 5-30
Synopsys Design Compiler 1

Task 17. Repartition the Unmapped Design

34. Read and link the unmapped design unmapped/TOP.ddc. (Re-invoke
Design Vision incase you exited the tool in the previous task)

35. From the Logical Hierarchy View, select both sub-designs with the instance
names I_DECODE and I_COUNT (CTRL + Left mouse click).

36. To confirm your selection, type the following at the command prompt:

get_selection

The command should return {I_COUNT I_DECODE}.

37. Group these two designs together with a new design name, NEW and a new
instance name, I_NEW, by typing the following:

group –design NEW –cell I_NEW [get_selection]

38. Validate this last step as follows: In the Logical Hierarchy View, you should
see the following.

Open up a Schematic View of TOP to see the new instance I_NEW that was
just created.

You can also type the following to report the design hierarchy:

report_hierarchy -noleaf

39. The next step is to ungroup everything below level two in the hierarchy for the
new design NEW. Do this by typing the following.

ungroup –start_level 2 I_NEW

Confirm this step using the same techniques as before. Your design
hierarchy should now be the desired, optimum hierarchy for synthesis.

Task 3. Compile and Analyze Results

40. Go to the Symbol or Schematic View of TOP.

 Lab 5

Partitioning for Synthesis Lab 5-31
Synopsys Design Compiler 1

Look at the bottom of the Design Vision window to make sure the
current_design is TOP.

41. Source the script file scripts/TOP.con.

42. Perform “compile” on TOP.

43. Generate a constraint report for All Violations (rc)

From Task-1 record the Delay and Area information into the table below and
the same for this current design after compile. If no timing violations are
reported, the design meets its timing constraints.

Task Compiled Design Timing Slack Area

Task 1 Initial partitioning

Task 3
After partitioning

(group + ungroup)

44. Highlight the critical path using Ctrl-h

Does the critical path cross any purely combinational blocks? __________

45. Quit Design Vision. There is no need to save this design, you will not be
using it again.

46. Using the results from the table above, Did repartitioning (group + ungroup)

a) Improve Timing ? __________ By how much ? __________

b) Improve Area ? __________ By how much ? __________

Note that the results are design and constraints dependent.

Question 9.

More Constraint Considerations Lab 9-32
Synopsys 10-I-011-SLG-013

Answers / Solutions

Answer to Block Diagram

Note: There is a solution script in .solutions/run.tcl

Clk

DECODE

COUNT

Original Partitioning

After Repartitioning

NEW

TOP

Input Port

TOP

Input Port

Clk

Data Pin of
Register

Lab 9

More Constraint Considerations Lab 9-33
Synopsys Design Compiler 1 Workshop

Environmental
Attributes

After completing this lab you should be able to:

 Determine the available and appropriate wireload model
and operating conditions model to use

 Define Design Compiler environmental attributes based
on a provided schematic and specification

 Apply the attributes to a design

 Verify the applied attributes

Lab Duration:
45 minutes

Learning Objectives

6

Lab 9

More Constraint Considerations Lab 9-34
Synopsys Design Compiler 1 Workshop

Lab Instructions

Perform the steps below. Refer to the Lab 4 step-by-step instructions as needed.

Read rtl/my_design.v

From the lab4/lib.rpt file write down
the library Capacitive Load Unit:

Copy and rename the
lab4/scripts/lab4.con constraints file

to lab6/scripts/lab6.con

Apply and verify the constraints and
attributes; Correct as needed:
 source
 report_port –v
 report_design

Invoke Design Compiler from the lab6
directory

Look at .solutions/lab6.con and
correct as needed

Save the design in the unmapped
directory and exit
Design Compiler

Add the environmental attributes from
the Specification below to lab6.con

Check and correct the syntax:
help; man;
Unix% dcprocheck

Write out (write_script) a
constraints file and “diff”

against .solutions/lab6.wscr

Lab 9

More Constraint Considerations Lab 9-35
Synopsys Design Compiler 1 Workshop

Design Schematic

data2[4:0]

data1[4:0]

sel[1:0]

out1[4:0]

out2[4:0]

out3[4:0]

D
Q
R2

Cin1[4:0]

Cout[4:0]

MY_DESIGN

Cin2[4:0]

D
Q
R3

D
Q
R1

S

T

D
Q
R4

V

COMBO

D
Q
F3

D
Q
F6

clk

Lab 9

More Constraint Considerations Lab 9-36
Synopsys Design Compiler 1 Workshop

Design Specification

Hint: Use the lib.rpt file in lab4 to obtain some of the information needed to apply
these specs.

Input Ports
(drivers)

1. Specify a drive on all inputs, except clk and Cin*, using
the buffer bufbd1 in the library

2. The Cin* ports are chip-level inputs and have a 120ps
maximum input transition.

Output Ports
(loads)

4. All outputs, except Cout, drive a maximum load
equivalent to 2 times the capacitance of the “I” pin of the
cell bufbd7.

5. The Cout port drives a maximum load of 25 fF.

Wireload Model “Manually” apply a wire load model appropriate for this
design’s size (Hint: Look at the area constraint for the
design in conjunction with the “Wire Loading Model
Selection Group” table in the library to find the right
model; Remember to disable automatic wireload
selection)

Operating Conditions There is only one Operating Condition model available in
the library. Apply that model.

Lab 9

More Constraint Considerations Lab 9-37
Synopsys Design Compiler 1 Workshop

More Constraint
Considerations

After completing lab 9A you should be able to:

 Constrain any single-clock (single-cycle and dual-phase)
design given the schematic and specification

 Compile the constrained design

 Identify constraints in a timing report

After completing the optional lab 9B you should be able to:

 Isolate any output port that fans out internally to the
design, from external loads

Lab Duration:
90 minutes

Learning Objectives

9

Lab 9

More Constraint Considerations Lab 9-38
Synopsys Design Compiler 1 Workshop

Lab 9A Instructions

Perform the steps below.

Read rtl/my_design.v

Copy and rename the
lab6/scripts/lab6.con constraints file

to lab9/scripts/lab9.con

Apply, verify and correct the
constraints, as done in Lab 4 and Lab

6. Compare
against .solutions/lab9A.wscr

or .solutions/lab9A.con as needed.

Invoke Design Compiler from the lab9
directory

Answer the “Lab 9A: QUESTIONS”
below

Save the design in the mapped
directory and exit
Design Compiler

Complete the constraints based on the
Specification and Schematic below

Check and correct the syntax as done
in Lab 4 and Lab 6

Compile the design
compile_ultra –scan \
 –retime -timing

Lab 9

More Constraint Considerations Lab 9-39
Synopsys Design Compiler 1 Workshop

Lab 9A: Design Schematic

data2[4:0]

data1[4:0]

sel[1:0]

out1[4:0]

out2[4:0]

out3[4:0]

D
Q
R2

Cin1[4:0]

Cout[4:0]

MY_DESIGN

Cin2[4:0]

D
Q
R3

D
Q
R1

S

T

D
Q
R4

V

COMBO

D
Q
F3

D
Q
F6

clk

D
Q
F5

D
Q
F4

Lab 9

More Constraint Considerations Lab 9-40
Synopsys Design Compiler 1 Workshop

Lab 9A: Design Specification

Clock Spec 7. Rename the clock from “clk “ to “my_clk”
8. Change the duty cycle to 40 % active high, with zero

offset.

Input Port Delays

1. The sel port data is being supplied by an additional
register, F4. The data at sel arrives no later than 420ps
after the negative edge-triggered launching clock edge of
F4.

2. The clock signal at F4 has a 600ps total (external +
internal) insertion delay from its clock source

Output Port Delays

1. The out1 port data is captured by an additional register,
F5. The data at out1 must arrive no later than 260ps before
F5’s negative edge-triggered clock edge.

2. The clock signal at F5 has an internal latency of 500ps
after the external my_clk clock generator delay

External Fanout,
Input Ports

Each input port (except clk) fans out to 2 other
sub-blocks, which each drive the equivalent of 3 bufbd1
(input pin I) buffers internally.

1. Model the external capacitive loading
2. Model the external fanout

External Fanout,
Output Ports

Each output port is assumed to drive 3 other sub-blocks.
The pin capacitance of these blocks has already been
specified. Model the external fanout on the output ports.

Wire Load: Sub-Design 1. Apply the wireload model ForQA to sub-designs ARITH
and COMBO

2. Set the wire load mode for the entire design to enclosed.

Wire Load: Ports MY_DESIGN is a sub-block of a chip which uses the
WLM called 16000. Apply this WLM to all ports of
MY_DESIGN.

Lab 9

More Constraint Considerations Lab 9-41
Synopsys Design Compiler 1 Workshop

Lab 9A: QUESTIONS

47. Generate a constraint report:

report_constraint –all_violators

Question 10. Does the design have any timing, area and/or DRC violations?

...

48. Generate an area report:

report_area

Question 11. Is it possible to know, just by looking at this report, how the
actual design area compares to the applied max area
constraint?

...

49. Generate a more targeted constraint report to find the area “slack”. The
–verbose option supplies more details about each constraint type (max
delay, min delay, max cap/tran/fanout, and max area), while –max_area
limits the report to just that constraint:

report_constraint –ver –max_area

50. Generate a timing report for the path to the out1 output. Include options to
show net transition times and net delays to 6 decimal places, as well as net
fanout (-trans –input –sig 6 –nets). Use the report to locate and fill
in the requested data. This data should match your constraints:

Question 12. What is the startpoint of the reported path?

...

Question 13. From the report identify the following startpoint values.
Include the constraint file command(s) which produce each of
the report values:

Lab 9

More Constraint Considerations Lab 9-42
Synopsys Design Compiler 1 Workshop

Clock my_clk
Launch edge time _______ Rising or falling? _______

Command(s) ..

...

Clock network delay = ..

Command(s) ..

...

Clock pin transition time = ..

Command(s) ..

...

Question 14. From the report identify the following endpoint values.
Include the constraint file command(s) which produce each of
the report values:

Clock my_clk
Capture edge time _______ Rising or falling? _______

Command(s) ..

...

Clock network delay = ..

Command(s) ..

...

Clock uncertainty = ...

Command(s) ..

Lab 9

More Constraint Considerations Lab 9-43
Synopsys Design Compiler 1 Workshop

...

Output external delay = ..

Command(s) ..

...

Question 15. Why is the output timing with respect to a falling clock edge?

...

Question 16. Why are the report values for uncertainty and output external
delay the negative of their corresponding constraint values?

...

Question 17. How does the net delay on the output port compare to the
internal net delays? What is the likely reason for such a
difference?

...

51. Generate a timing report for the path from the sel input to the Cout output.
Include options to show transition times and net delays to 6 decimal places.
Use the report to locate and fill in the requested data. This data should match
your constraints:

Question 18. From the report identify the following startpoint values.
Include the constraint file command(s) which produce each of
the report values:

Clock my_clk
Launch edge time _______ Rising or falling? _______

Command(s) ..

...

Clock network delay = ..

Command(s) ..

...

Lab 9

More Constraint Considerations Lab 9-44
Synopsys Design Compiler 1 Workshop

Input external delay = ...

Command(s) ..

...

Transition time of sel port = ..

Command(s) ..

...

Question 19. What is causing the “Incr” (incremental) delay on the sel
input port?

...

Question 20. How can you verify that the COMBO path from Cin* to Cout
is constrained to the required 2.45ns spec?

...

52. Save the design in mapped and exit Design Compiler.

Congratulations! You are now able to create, verify and identify timing, area and
environmental constraints for any single clock design given the schematic and
specification.

If you have some extra time left you can try the optional part 9B.

Lab 9

More Constraint Considerations Lab 9-45
Synopsys Design Compiler 1 Workshop

Lab 9B: OPTIONAL – Port Isolation

In this lab you will see the potential problem of having output ports which are connected to part of an internal
timing path. You will then fix the problem by isolating the output ports from the internal path.

Lab 9B Instructions

53. Invoke Design Vision from the lab9 directory.

54. Read the mapped/ISOLATE_PORTS.ddc design. The design has already
been constrained and compiled.

55. Bring up the schematic view and examine the path that goes to the output
ports. Notice that the two output ports are connected to each other, and the
output net also fans out internally to another gate input.

Question 21. Does the design have any violations?

...

56. With a text editor open the constraints file used for this design,
scripts/isolate_ports.con.

Notice that the output ports each have a 30fF load applied to them. It turns out
that this output load is an estimate. The load could be larger or smaller. Let’s
find out next what happens if we increase the load.

57. Change the output load to 60fF and save the file.

58. Apply the updated constraints to the design:

source scripts/isolate_ports.con

59. Generate a default timing report and highlight the critical path (CTRL-H):

Question 22. Describe the resulting violating path:

...

Lab 9

More Constraint Considerations Lab 9-46
Synopsys Design Compiler 1 Workshop

...

Note: Since the output ports are connected to one of the nets which is part
of the loop-back path, an increase in the external output loading is
now causing an internal register-to-register path violation!

Question 23. What command can be used to “isolate” the output ports from
internal paths (allowing the use of inverters)?

...

60. Edit the isolate_ports.con file again: Change the output load back to 30fF, and
include the port isolation command from the question above. Save the file.

61. Apply the updated constraints.

62. Generate a report to verify that the new constraint was applied to the output
ports:

report_isolate_ports

63. Perform an incremental compile:

compile –scan –boundary –map high –incr

Question 24. Does the design have any violations?

...

Question 25. What did set_isolate_ports accomplish?

...

64. Save the design into the mapped directory and exit Design Vision.

Multiple Clocks and Timing Exceptions Lab 10-47
Synopsys 10-I-011-SLG-013

Answers / Solutions

Question 9. Does the design have any timing, area and/or DRC
violations?

From report_constraint –all you should see that
there are no timing, area or design rule violations. If you
have any violations: 1) Check and correct your constraints
(compare against .solutions/lab9.con), 2) Remove the
design from memory, 3) Re-apply the constraints and 4)
Re-compile the design, 5) Generate another constraint
report.

Question 10. Is it possible to know, just by looking at this report, how the
actual design area compares to the applied max area
constraint?

No. The report only shows the design’s actual area. It does
not include, or compare it against, the max area constraint.

Question 11. What is the startpoint of the reported path?

The startpoint is the clock pin, CP or CPN, of a register:
R_#/CP or R_#/CPN

Question 12. From the report identify the following startpoint values.
Include the constraint file command(s) which produce each
of the report values:

Clock my_clk
Launch edge time: 0.0ns, Rising

create_clock -period 3.0 \
–name my_clk -waveform {0 1.2} \
 [get_ports clk]

Clock network delay = 1.0ns

set_clock_latency -source 0.7 \
 [get_clocks my_clk]

set_clock_latency 0.3 \
 [get_clocks my_clk]

Clock pin transition time = 0.12ns

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-48
Synopsys Design Compiler 1

set_clock_transition 0.12 \
 [get_clocks my_clk]

Question 13. From the report identify the following endpoint values.
Include the constraint file command(s) which produce each
of the report values:

Clock my_clk
Capture edge time: 1.2ns, Falling

create_clock -period 3.0 \
–name my_clk -waveform {0 1.2} \
 [get_ports clk]

set_output_delay -max -0.24 \
-clock my_clk -add_delay \
-clock_fall \
-network_latency_included \
 [get_ports out1]

Clock network delay = 0.7ns

set_clock_latency -source 0.7 \
[get_clocks my_clk]

set_output_delay -max -0.24 \
-clock my_clk -add_delay \
-clock_fall \
-network_latency_included \
 [get_ports out1]

Clock uncertainty = -0.15ns

set_clock_uncertainty -setup 0.15 \
 [get_clocks my_clk]

Output external delay = 0.24ns

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-49
Synopsys Design Compiler 1

set_output_delay -max -0.24 \
-clock my_clk -add_delay \
-clock_fall \
-network_latency_included \
 [get_ports out1]

Question 14. Why is the output timing with respect to a falling clock
edge?

The out1 port is constrained by two registers – a rising (F6)
and a falling (F5) edge-trigged one. DC determined that the
timing constraint to the falling edge-triggered register is the
more restrictive of the two.

Question 15. Why are the report values for uncertainty and output
external delay the negative of their corresponding constraint
values?

The negated values simply mean that the constraint numbers
are being subtracted from the “data required time”.

Question 16. How does the net delay on the output port compare to the
internal net delays? What is the likely reason for such a
difference?

The net delay on the output port is a lot larger than most of
the internal net delays. This is probably due to the fact that
the I/O ports have a larger WLM (16000) assigned to them
compared to the WLM of the internal nets of the design
(8000). Also, the output ports have an external fanout of 3
(not included in the Fanout column) compared to the
smaller internal net fanouts.

set_wire_load_model -name 16000 \
 [all_outputs]

set_port_fanout_number 3 \
[all_outputs]

Question 17. From the report identify the following startpoint values.
Include the constraint file command(s) which produce each
of the report values:

Clock my_clk
Launch edge time: 1.2ns, Falling

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-50
Synopsys Design Compiler 1

create_clock -period 3.0 \
–name my_clk -waveform {0 1.2} \
 [get_ports clk]

set_input_delay -max 1.02 \
-clock my_clk -add_delay \
-clock_fall \
-network_latency_included \
-source_latency_included \
 [get_ports sel]

Clock network delay = 0.0ns

set_input_delay -max 1.02 \
 -clock my_clk -add_delay \
 -clock_fall \
 -network_latency_included \
 -source_latency_included \
 [get_ports sel]

Input external delay = 1.02ns

set_input_delay -max 1.02 \
 -clock my_clk -add_delay \
 -clock_fall \
 -network_latency_included \
 -source_latency_included \
 [get_ports sel]

Transition time of sel port = ~0.2 - 0.6ns

set_driving_cell \
 -lib_cell bufbd1 \
 -library cb13fs120_tsmc_max \
 [remove_from_collection \
 [all_inputs] \
 [get_ports "clk Cin*"]]

Question 18. What is causing the “Incr” (incremental) delay on the sel
input port?

This represents the additional time for the input signal with
the above transition time to reach the “switching point”. It is
not due to net delay, which is reported separately at the
input pin of the first gate.

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-51
Synopsys Design Compiler 1

Question 19. How can you verify that the COMBO path from Cin* to
Cout is constrained to the required 2.45ns spec?

report_timing \
–from [get_ports Cin*] \
-to [get_ports Cout]

Subtract the “data required time” (3.45 to 3.85ns) from the
data arrival time at the input port (1.0 to 1.4ns) to get
2.45ns.

Question 20. Does the design have any violations?

From report_constraints –all you should see that
there are no timing, area or DRC violations.

Question 21. Describe the resulting violating path:

The violating path is an internal register-to-register
loop-back path.

Question 22. What command can be used to “isolate” the output ports
from internal paths (allowing the use of inverters)?

set_isolate_ports –type inverter \
 [all_outputs]

Question 23. Does the design have any violations?

From report_constraints –all you should see that
there are no timing, area or DRC violations.

Question 24. What did set_isolate_ports accomplish?

It isolated the output ports from the internal path as well as
from each other. The internal path delay no longer depends
on the external output loading. It did this even though there
were no timing violations with the original constraints.

This page was intentionally left blank.

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-52
Synopsys Design Compiler 1

The goal of this lab is to give you a better understanding of
how static timing analysis works and how timing
exceptions are properly applied.

After completing this lab, you should be able to:

 Fully constrain and analyze a design using virtual
clocks, false paths and multicycle paths.

Multiple Clocks and
Timing Exceptions 10

Lab Duration:
60 minutes

Learning Objectives

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-53
Synopsys Design Compiler 1

Background

The design you will be working with, called “exceptions”, contains parallel paths
shown in the figure below (resets not shown). Between the inputs adr_i and
coeff, and the output dout there is a purely combinatorial path as well as a
sequential path.

The combinatorial and sequential paths have different constraints. When you
perform timing analysis, you will discover that there are initially many violations –
all due to incomplete or incorrect constraints.

clk

Combinatorial
Logic

adr_i[15:0]

coeff[15:0]

sel_combo

dout[31:0]

mul_result_reg

Figure 1. Design “exceptions”

If you run into difficulties while performing the various tasks, check the
Answers/Solutions section at the back of this lab.

You may also check the file .solutions/run.tcl for help.

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-54
Synopsys Design Compiler 1

Lab Instructions

Task 4. Read a Mapped Design

65. Make sure your current working directory is lab10 and invoke dc_shell-t.

66. Read the compiled design “exceptions” into memory.

read_ddc exceptions.ddc
link

67. Use the view utility to generate a constraint report, and a default timing report.

v rc

v rt

Note: “v” is an alias for the Tcl function “view”, which is defined
in ../ref/tools/procs.tcl. It is very useful during shell use.

Question 26. How large is the worst negative slack in comparison with the
data required time?

..

Question 27. Describe the start and end points of this violating timing path?

..

Question 28. What is the maximum path delay constraint for this critical
path (= Clock Period – Input Delay – Output Delay)?

..

This path is over constrained - it cannot meet a –1 ns maximum delay!

This design was given improper constraints for demonstration purposes. The
maximum propagation delay through the combinational path should be
constrained to 10 ns. The current input and output delay constraints are
appropriate for the sequential paths (from the input ports to a flip-flop and
from flip-flops to the output ports), but clearly not for the purely
combinational paths.

The constraints must be expanded such that the different paths are constrained
separately.

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-55
Synopsys Design Compiler 1

Task 5. Constrain Parallel Paths Separately

In this task you will use virtual clocks to constrain the combinatorial paths
separately from the sequential timing paths.

68. Apply additional constraints so that the combinatorial logic is constrained
independent of the sequential logic path constraints.

To accomplish this, constrain the combinatorial paths with respect to a
different clock (vclk) than the sequential paths; this way multiple constraints
can be overlaid without interfering with each other. The following schematic
illustrates this concept (note that the two input ports, adr_i and coeff, are
collapsed into one port here to simplify the schematic):

clk

Combinatorial
Logic

sel_combo

mul_result_reg

clk
clk

vclk

4 ns

0 ns

2 ns

vclk

0 ns

The diagram shows that two clocks, clk and vclk are now clocking the input
and output data of the design. The sequential paths, to and from the internal
registers, are constrained using clk, and the purely combinatorial path should
be constrained by the virtual clock vclk.

The combinatorial path must have a maximum delay of 10 ns. This is
accomplished by applying a 10 ns period to vclk, while and the input and
output delays with respect to vclk are set to zero.

Remember that the input delay constraint should be applied to the ports coeff*
and adr_i*

Apply the appropriate commands based on what you learned in lecture.
Use the Job Aid as needed.

If you’re stuck, check the Answers section.

69. Generate a timing report for a timing path constrained by the virtual clock.

The switch –group will generate a timing report for the path group vclk (i.e.
the timing path with the worst slack for setup captured by the clock vclk).

v rt -group vclk

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-56
Synopsys Design Compiler 1

Question 29. Does the path violate or meet timing?

..

Question 30. Describe the launch and capture clocks. Does this match your
expectations?

..

70. The clocks clk and vclk should not interact. Apply false paths to turn off
timing analysis between these clocks.

If you’re stuck, check the Answers section.

71. Repeat the last timing report

Question 31. Does the path violate or meet timing?

..

Question 32. Describe the launch and capture clocks and does this match
your expectations?

..

72. This constraining situation is not quite over! Try the following report and
answer the following questions.

v rt -group clk

Question 33. Does this path violate or meet timing?

..

Question 34. Describe the start and end points of this timing path and does
this match your expectations?

..

73. As the final step, turn off timing analysis from clock clk to clk through the
combinatorial logic using false paths.

Perform a timing report from all inputs to all outputs and confirm that the
combinatorial paths are constrained by vclk and that these paths meet timing.

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-57
Synopsys Design Compiler 1

Task 6. Constrain a Multicycle Path

The path to the mul_result_reg is a multicycle path, which is allowed to take up
to 2 clock cycles (instead of 1, the default) for setup. The hold checks should be
done at zero. These paths are not yet correctly constrained.

74. Execute a timing report for the clock clk.

v rt –group clk

Question 35. How large is this violation in comparison to the clock period?

..

75. Apply a multicycle path of 2 cycles for setup to all paths that end at the D pin
of mul_result_reg*.

76. Verify that the multicycle path exception was applied correctly:

v rt -to mul_result_reg*/D

Question 36. What is the effective clock period for this timing path (the
clock capture edge – the clock launch edge)?

..

77. Generate a hold timing report to these same end points.

!! –delay min

Question 37. What are the launch and capture clock edges and does this
match the specification described at the beginning of this task?

..

 Lab 10

Multiple Clocks and Timing Exceptions Lab 10-58
Synopsys Design Compiler 1

78. Complete the multicycle path constraint by including a constraint for hold.

Question 38. What are the launch and capture clock edges and are they
now correct for hold ?

..

79. Generate a final “report_constraint –all” to make sure that all
violations have been taken care of.

80. Quit Design Compiler.

 Congratulations – This completes lab 10.

Synthesis Techniques Lab 11-59
Synopsys Design Compiler 1 Workshop

Answers / Solutions

Question 25. How large is the worst negative slack in comparison with
the data required time?

The data is required at 5ns. The WNS (~ -9 ns) is twice as
large as the data required time!

Question 26. Describe the start and end points of this violating timing
path?

The start point is an input port and the end point is an output
port.

Question 27. What is the maximum path delay constraint for this critical
path (= Clock Period – Input Delay – Output Delay)?

-1ns (5ns – 2ns – 4ns)! This is not an achievable
constraint.

Solution for task 2 step 1:

create_clock –name vclk –period 10

set in_ports [get_ports "coeff* adr_i*"]

set_input_delay 0 –clock vclk –add_delay $in_ports

set_output_delay 0 –clock vclk –add_delay [all_outputs]

Question 28. Does the path violate or meet timing?

It violates.

Question 29. Describe the launch and capture clocks and does this match
with your expectations?

The launch clock is clk and the capture clock is vclk. This
is not correct! The combinatorial paths should be
constrained only by vclk. The two clocks should not
interact.

Solution for task 2 step 3:

set_false_path -from [get_clocks clk] -to [get_clocks vclk]

set_false_path -from [get_clocks vclk] -to [get_clocks clk]

Synthesis Techniques Lab 11-60
Synopsys Design Compiler 1 Workshop

Question 30. Does the path violate or meet timing?

It should meet timing.

Question 31. Describe the launch and capture clocks and does this match
your expectations?

Both the launch and capture clocks are vclk. This is
correct.

Question 32. Does this path violate or meet timing?

It violates.

Question 33. Describe the start and end points of this timing path and
does this match your expectations?

The start point is an input port and the end point is an output
port. This should not happen! The combinatorial paths
should only be constrained by vclk and not by clk.

Solution for task 2 step 5:

set_false_path -from [get_clocks clk] \

-through $in_ports \

-through [all_outputs] -to [get_clocks clk]

v rt -from $in_ports -to [all_outputs]

Question 34. How large is this violation in comparison to the clock
period?

The violation is ~ 3.5 ns, very close to the clock period.

Solution for task 3 step 2:

set_multicycle_path 2 -setup -to mul_result_reg*/D

Synthesis Techniques Lab 11-61
Synopsys Design Compiler 1 Workshop

Question 35. What is the effective clock period for this timing path (the
clock capture edge – the clock launch edge)?

The effective clock period is 10 ns, 2 times the actual clock
period of clk (5 ns).

Question 36. What are the launch and capture clock edges and does this
match the specification described at the beginning of this
task?

The launch clock edge is 0ns and the capture clock edge is
at 5 ns (one edge preceding the setup clock edge). This
does not match the original specification which stated the
hold checks should be done at zero.

Solution for task 3 step 5:

set_multicycle_path 1 -hold -to mul_result_reg*/D

Question 37. What are the launch and capture clock edges and are they
now correct for hold?

The launch and capture clock edges are at zero and this is
now correct.

Synthesis Techniques Lab 11-62
Synopsys Design Compiler 1 Workshop

Synthesis Techniques

After completing this lab, you should be able to:

 Select the recommended compile flow based on license
and library availability

 Apply the recommended synthesis techniques to meet the
required constraints

 Verify applied directives and variables before compile

 Analyze the gate level netlist:

 a) To ensure that all constraints have been met

 b) To observe the results of the variousoptimization
techniques invoked

 Use the Job Aid to find all the necessary commands to
accomplish the above steps

Lab Duration:
90 minutes

Learning Objectives

11

Synthesis Techniques Lab 11-63
Synopsys Design Compiler 1 Workshop

Lab Overview

The objective of this lab is to compile a design called STOTO using the information
listed in the Synthesis Specification table. You will accomplish this by following
the step-by-step Lab Instructions, which will guide you in performing the
following tasks:

 Select the appropriate compile flow based on the stated Available
Resources

 Use the DC shell interactively to read in and constrain the design

 Interactively apply and execute the appropriate compile flow techniques and
commands, to achieve the stated Design Specification

 Verify the applied compile directive commands and variables before each
compile or optimization

 Analyze the results after each compile or optimization to determine what
step, if any, to perform next

 While performing all the above steps interactively you will also create a “run
script” so that your steps can be easily corrected and re-applied as necessary

Synthesis Techniques Lab 11-64
Synopsys Design Compiler 1 Workshop

Design Schematic
You are provided with the RTL code of the design (rtl/stoto.v) and the design
constaints (scripts/stoto.con).

RTL design hierarchy:

Design Name Cell Name

STOTO
INPUT (I_IN)
MIDDLE (I_MIDDLE)

PIPELINE (I_PIPELINE)
DONT_PIPELINE (I_DONT_PIPELINE)
GLUE (I_GLUE)
ARITH (I_ARITH)
RANDOM (I_RANDOM)

OUTPUT (I_OUT)

 PIPELINE

DONT_
PIPELINE

MIDDLE INPUT OUTPUT

STOTO

Data Inputs
[4:0] a1, a2, b1, b2,
 c1, c2, d1, d2,
 [9:0] M, N, X

Control Inputs
 [1:0] sel1, sel2

Clock Input
 clk

Data Output(s)
 [9:0] Z

GLUE ARITH RANDOM

a1, a2,
b1, b2,
c1, c2,
d1, d2

 PIPELINE a

MIDDLE

Synthesis Techniques Lab 11-65
Synopsys Design Compiler 1 Workshop

M

POUT

N

sel1

clk

 GLUE

a

b

y

logic

z

 ARITH

a

b

a+b

sum

 RANDOM a

b

sel

clk

int1_reg

int2_reg

MIDDLE

z
MOUT

 INPUT

sel1

logic

a_reg

clk

b_reg

c_reg

d_reg

b

c

d

POUT a*b+c-d

z1_reg z_reg

 logic logic

 OUTPUT

X

MOUT

a+b z
sel2

DONT_PIPELINE

Synthesis Techniques Lab 11-66
Synopsys Design Compiler 1 Workshop

Synthesis Specification

Available Resources 9. All Design Compiler and related licenses are available, but
only a single license is available for each feature

10. Neither the physical library (Milkyway) nor a design
floorplan is available at this time

Design and Constraints Files 1. RTL code location: rtl/stoto.v
2. Design Name: STOTO
3. Constraints file location: scripts/stoto.con
4. These files may not be modified

Design Specification 1. The design is timing-critical
2. The I/O constraints are estimates and have been

conservatively constrained
3. The final compiled design should meet setup timing on all

internal register-to-register paths
4. Area and design rule constraints must also be met, if

possible
5. Scan insertion will be performed by the Test group after

the design has met these specifications
6. The INPUT block hierarchy should be preserved to

facilitate post-synthesis verification
7. The arithmetic logic (a * b + c - d) in PIPELINE is

expected to take almost 2 clock cycles
8. The output (POUT) of PIPELINE must remain

registered
9. The positions of non-pipelined registers (i.e., registers in

the INPUT and DONT_PIPELINE blocks) are fixed and
cannot be modified

Synthesis Techniques Lab 11-67
Synopsys Design Compiler 1 Workshop

Lab Instructions

81. Look at the Available Resources section of the Synthesis Specification table
to answer the following question:

Question 39. Which of the following is the appropriate flow for
this project: Expert, Ultra-WLM,
Ultra-Topographical or ACS?

...

Note: You are encouraged to check your answers against the
Answers/Solutions section at the end of the lab.

82. Invoke DC shell in the appropriate “mode” (WLM versus Topographical)
from the lab11 directory.

83. Create a new file called run.tcl in the scripts directory. For each of the
following steps, whenever you apply a command interactively in the DC-shell
environment, copy and paste the command into the run.tcl file.

84. In your Job Aid, locate the Run Script section and the appropriate Ultra
Compile Flow section from your answer above. Refer to these sections while
performing each of the following steps.

85. In the DC-shell environment, interactively read, constrain and check the
design listed in the Design and Constraints Files section of the Synthesis
Specification table.

Remember to also “copy and paste” the commands into your run script file
run.tcl!

86. Interactively apply the recommended commands, directives, variables and
attributes, up until, but NOT including the first compile, which address Design
Specification #2, 3, 6 and 7.

Remember to copy and paste into your run script.

Note: Refer to your Job Aid sections called Run Script and Ultra
Compile Flow.

Note: If you are really stuck you can refer to the run scripts in
the .solutions directory:
run.tcl is the “plain” script which contains only the required
run script commands – no “checking” and no explanations;
run_w_check_expl.tcl contains additional “checking”
commands to verify each applied directive, variable or
attribute, as well as comments explaining each step.

Synthesis Techniques Lab 11-68
Synopsys Design Compiler 1 Workshop

87. Enter the following commands to verify that the all of the appropriate
variables, directives and attributes have been correctly applied prior to
compile:

report_path_group

printvar compile_auto_ungroup*

get_attribute [get_designs "PIPELINE INPUT"] ungroup

report_timing_requirements

report_timing_requirements -ignored

Question 40. Are you seeing the expected results for each check?

...

...

...

...

...

88. Save your design as mapped/pre_compile.ddc.

Question 41. What compile_ultra options will you apply?
Based on which four Design Specification items?

...

...

89. Compile the design with the appropriate options.

While you are waiting for the compile to finish, use the design schematic on
the previous pages to answer the following two questions:

Question 42. Is the design well partitioned for synthesis?
Explain.

...

Question 43. Which sub-designs would need to be ungrouped to
obtain ideal partitioning for synthesis?

...

90. After the compile is completed, check the design’s hierarchy:

Synthesis Techniques Lab 11-69
Synopsys Design Compiler 1 Workshop

get_designs *

report_hierarchy -noleaf

report_auto_ungroup

Question 44. Did auto-ungrouping eliminate the expected
sub-designs?

...

91. Generate a constraint report (rc) to the screen as well as to a file:

redirect –tee –file rc_compile_ultra.rpt {rc}

Question 45. Are there any constraint violations? If so, describe
them.

...

...

...

Question 46. Should you be concerned about these violations?
Explain.

...

...

92. Look at the “Endpoint” of one of the “min-delay” violations. Notice that the
endpoint “I_MIDDLE/I_PIPELINE/z1_reg…” contains the instance name
“I_MIDDLE”, even though the sub-design MIDDLE was auto-ungrouped!

When ungrouping, Design Compiler keeps the original hierarchical path name
to a child cell and converts it into a non-hierarchical cell name – the cell name
of the PIPELINE sub-block is now I_MIDDLE/I_PIPELINE – here the slash
no longer denotes a hierarchy separator but is just a character that is part of
the cell’s new, longer name. This makes it easy to “trace” ungrouped cells to
know where they originally came from.

93. Save your design as mapped/compile_ultra.ddc.

Question 47. Since the violations are of no concern, are you
done with synthesis? Explain.

Synthesis Techniques Lab 11-70
Synopsys Design Compiler 1 Workshop

...

...

...

94. Remove the “timing exception” from the design.

Question 48. Are there any “worriesome” constraint violations
now? Explain.

...

...

95. Optimize the pipeline while taking into consideration Design Specification
#8 and 9.

Registers that have been moved or repositioned by optimize_registers end
with the following cell name: clockname_r_REG#_S#. Use this fact to
answer the following questions:

Question 49. How can you verify that registers were moved?

...

...

Question 50. How can you verify that only PIPELINE registers
were moved?

...

...

Question 51. How can you verify that the z_reg* registers
were not moved?

...

...

96. Generate another constraint report.

Question 52. Have the violations improved? Explain.

...

...

Synthesis Techniques Lab 11-71
Synopsys Design Compiler 1 Workshop

97. Save your design as mapped/optimize_reg.ddc.

98. Refer to the bottom portion of the “Ultra Compile Flow” section of the Job
Aid to answer the following two questions:

Question 53. What are the next suggested steps if there are still
violations after optimize_registers?

...

...

...

Question 54. Based on the Design Specification, does it make
sense to perform these steps?

...

CONGRATULATIONS! You have successfully completed the “Synthesis
Techniques” lab! With the help of the provided Job Aid you should now be
able to apply the recommended synthesis flow and techniques to any
real-world design!

Continue with the OPTIONAL LAB next if you have some extra time.

Synthesis Techniques Lab 11-72
Synopsys Design Compiler 1 Workshop

OPTIONAL LAB: Adaptive Retiming

In this optional lab you will compare the results of a compile with, and without,
adaptive retiming (-retime).

99. Edit your run.tcl script as follows:

 Change the saved design name prior to compile_ultra to
pre_retime.ddc

 Add the –retime option to the compile_ultra command

 Change the saved design name after compile_ultra to
compile_retime.ddc

 Redirect a constraint report to rc_compile_retime.rpt immediately after
compile_ultra

 Add the TCL return command just before resetting the multicycle path
constraint to terminate script execution at this point

 Save and close the run script file

100. Remove the current design from DC memory (fr).

101. Execute the updated run script (source)

102. Compare the constraint report results from this run (rc_compile_retime.rpt) to
that of the run without adaptive retiming (rc_compile_ultra.rpt) which you
generated previously.

Question 55. What difference do you notice in the worst slack
of the INPUTS path group?

...

Question 56. How can you tell that the endpoint registers in the
INPUTS path group were affected by –retime?

...

...

Question 57. Can you explain why there is now an area
violation?

...

...

Synthesis Techniques Lab 11-73
Synopsys Design Compiler 1 Workshop

You have now seen how adaptive retiming can be effectively used to improve
timing in a timing-critical design. You have also noticed that the design size
can increase due to register splitting.

CONGRATULATIONS!! This concludes Lab 11.

Synthesis Techniques Lab 11-74
Synopsys Design Compiler 1 Workshop

Answers / Solutions

Question 38. Which of the following is the appropriate flow for this project:
Expert, Ultra-WLM, Ultra-Topographical or ACS?

Ultra-WLM. Since, according to the Available Resources,
“All Design Compiler and related licenses are available”, we
should use the Ultra flow. Since “only a single license is
available for each feature”, we can not use ACS. Lastly, since
“Neither the physical library (Milkyway) nor a design floorplan
is available at this time” we can not use Ultra’s “topographical
mode”.

Question 39. Are you seeing the expected results for each check?

report_path_group should confirm that there are 4 path
groups, in addition to the default group: an input, output,
combinational and clk path group. The clk group should have a
weight of 5 and a critical range of 0.21.

printvar compile_auto_ungroup* should confirm the
following variable values:

compile_auto_ungroup_area_num_cells = "30"
(not used – default value shown)
compile_auto_ungroup_count_leaf_cells =
"true"
compile_auto_ungroup_delay_num_cells =
"99999999" (or any large number)
compile_auto_ungroup_override_wlm = "true"

get_attribute [get_designs "PIPELINE \ INPUT"]
ungroup should return “false false” as the value of the
ungroup attribute on each of the two designs.

report_timing_requirements should confirm that
there is a setup timing exception applied, for 2 cycles, to or
from the appropriate end/startpoint, respectively.

report_timing_requirements –ignored should not
return anything, confirming that the applied exception was
accepted (no start/endpoint errors).

Question 40. Which compile_ultra options will you apply? Based on
which three Design Specification items?

compile_ultra –timing –scan

Synthesis Techniques Lab 11-75
Synopsys Design Compiler 1 Workshop

(Note: No –retime option!!)

From #1 “The design is timing-critical”, and from #4 “Area and
design rule constraints must also be met, if possible”, you
should use the –timing option.

From #5 “Scan insertion will be performed by the Test group
after the design has met these specifications”, you should use
the –scan option.

From #9 “The positions of non-pipelined registers are fixed and
cannot be modified”, you should NOT use –retime.

Question 41. Is the design well partitioned for synthesis? Explain.

No! Logic optimization will be restricted at the interfaces
between the following sub-designs, due to hierarchical
partitioning:

GLUE ARITH
ARITH RANDOM
RANDOM OUTPUT

Question 42. Which sub-designs would need to be ungrouped to obtain ideal
partitioning for synthesis?

MIDDLE, DONT_PIPELINE, GLUE, ARITH, RANDOM and
OUTPUT.

Question 43. Did auto-ungrouping eliminate the expected sub-designs?

If the auto-ungrouping variables were correctly applied, and
compile_ultra was used, the designs listed in the previous
answer should have all been auto-ungrouped. The only designs
left in DC memory should be: STOTO, INPUT, PIPELINE, and
INCORRECT (which is an “empty, statndalone” module
included in the RTL just to trap you incase you forgot to set the
current_design to STOTO after reading in the RTL).

Question 44. Are there any constraint violations? If so, describe them.

There are max-delay violations in the input path group. You
may also see min-delay violations associated with the
PIPELINE registers in the clk path group, unless you applied a

Synthesis Techniques Lab 11-76
Synopsys Design Compiler 1 Workshop

set_multicycle_path –hold constraint along with the
–setup constraint.

Question 45. Should you be concerned about these violations? Explain.

Since, according to the Design Specification, the I/O constraints
are conservative, and the goal is to meet reg-to-reg timing, the
max-delay violations are not critical.

The min-delay violations, if there, are a product of the
multi-cycle timing exception which was temporarily applied to
the pipeline arithmetic logic for the first compile. The exception
increased the setup timing cycle by one additional clock cycle,
and, since no hold exception was applied, the hold time is also
increased by one clock cycle, by default, causing the violations.
These violations are therefore of no concern.

Question 46. Since the violations are of no concern, are you done with
synthesis? Explain.

No! The multi-cycle timing exception in the PIPELINE design
is probably masking some critical reg-to-reg timing violations
through the arithmetic logic in PIPELINE.

Question 47. Are there any “worriesome” constraint violations now? Explain.

Yes!
You should now see large max-delay violations in the clk
group, ending at the z1_reg registers, which are in the
PIPELINE sub-design.
You should also see the same max-delay violations in the input
group as before.
You should notice that min-delay violations are gone.

Question 48. How can you verify that registers were moved?

get_cell -hier *REG*_S* returns cell names, which
proves that optimize_registers did in fact move some
registers.

Question 49. How can you verify that only PIPELINE registers were
moved?

Since every single cell name starts with
I_MIDDLE/I_PIPELINE you know that only PIPELINE
registers were moved.

Question 50. How can you verify that the z_reg* registers were not
moved?

Synthesis Techniques Lab 11-77
Synopsys Design Compiler 1 Workshop

Since all the register cells end with S1 you know that only
z1_reg, the first stage registers, were moved.

This can be further verified with additional checks: get_cell
-hier *z_reg* shows that the original register names still
exist, which means that optimize_registers did not
move them. You can also generate a timing report which shows
that the PIPELINE output is registered:
report_timing -from \

I_MIDDLE/I_PIPELINE/z_reg[*]/*

Question 51. Have the violations improved? Explain.

Yes! All the reg-to-reg clk group violations (from PIPELINE)
should be gone.

Question 52. What are the next suggested steps if there are still violations
after optimize_registers?

1) Apply more focus on violating critical paths, as necessary:
group_path –weight –critical

2) Enable Ultra optimization: set_ultra_optimization
true

3) Perform an incremental high-effort compile
compile –bound –scan –map high -incr

Question 53. Based on the Design Specification, does it make sense to
perform these steps?

No. We have met the stated specification that all reg-to-reg
setup timing must be met. Since the I/O constraints are
estimates and have been conservatively constrained, it does not
make sense to spend any more time trying to get these I/O
violations to pass.

Question 54. What difference do you notice in the worst slack of the INPUTS
path group?

The worst or largest negative slack should be markedly lower
with adaptive retiming. You may also notice an increased
number of smaller violations.

Question 55. How can you tell that the endpoint registers in the INPUTS path
group were affected by –retime?

Synthesis Techniques Lab 11-78
Synopsys Design Compiler 1 Workshop

The registers are named R_## as opposed to *_reg[#]. Adaptive
retiming renames moved registers with the former naming
convention.

Question 56. Can you explain why there is now an area violation?

This is because the number of registers has increased
substantially, due to register “splitting”. You can see the register
area increase by generating an area report (report_area) for
the retimed and the non-retimed designs, and comparing the
“Noncombinational area” numbers.

Synthesis Techniques Lab 11-79
Synopsys Design Compiler 1 Workshop

Invoking Design Compiler

Unix% design_vision # Interactive GUI, WLM mode
Unix% design_vision –topographical # Interactive GUI, Topographical mode
Unix% dc_shell-t # Interactive shell, WLM mode
Unix% dc_shell-t –topographical # Interactive shell, Topographical mode
Unix% dc_shell-t –f RUN.tcl | tee –i my.log # Batch mode

Converting .db to .ddc Design Format
Unix% dc_shell-t
dc_shell-xg-t> read_db MYDES.db
dc_shell-xg-t> write –format ddc –hier –out MYDES.ddc
dc_shell-xg-t> exit
Unix% dc_shell-t
dc_shell-xg-t> read_ddc MYDES.ddc

Helpful UNIX-like DC-shell commands
pwd
cd
ls
history
!!
!7
!report
sh <UNIX_command>
printenv
get_unix_variable ARCH

Design Compiler 2007.03 Job Aid

.synopsys_dc.setup
set search_path “$search_path libs cons unmapped rtl”
set synthetic_library dw_foundation.sldb
set target_library 65nm.db
set link_library “* $target_library $synthetic_library IP.db”
set symbol_library 65nm.sdb

define_design_lib WORK –path ./work
set_svf <my_filename.svf>
set_vsdc <my_filename.vsdc>

history keep 200

set sh_enable_page_mode false

set cache_write .
set cache_read $cache_write

suppress_message {LINT-28 LINT-32 LINT-33 UID-401}

set alib_library_analysis_path [get_unix_variable HOME]

alias h history
alias rc “report_constraint -all_violators”

TCL Commands and Constructs

set PER 2.0 # Define a variable and its value
echo $PER # Variable substitution 2.0
set MARG 0.95
expr $PER * $MARG # expr: *, /, +, -, >, <, =, <=, >=
set pci_ports [get_ports A] # Imbedded command
set pci_ports [get_ports “Y??M Z*”] # Wildcards
echo “Effctv P = \ # Soft quotes 1.9
 [expr $PERIOD * $MARGIN]”
echo {Effctv P = \ # Hard quotes
 [expr $PERIOD * $MARGIN]} # Effctv P = [expr $PER * $MARG]

Comment line
set COMMENT in_line; # In-line comment

set MY_DESIGNS {B1.v ... B26.v} # foreach loop
foreach DESIGN $MY_DESIGNS {
 read_verilog $DESIGN
}
for {set i 1} {$i < 27} {incr i} { # for loop
 read_verilog BLOCK_$i.v
}

Getting Help
help –verbose *clock
man create_clock
create_clock –help
printvar *_library
man target_library

 # Using DC “man” from UNIX prompt
UNIX% alias dcman “/usr/bin/man –M $SYNOPSYS/doc/syn/man”
UNIX% dcman target_library

Solvnet articles and software documentation;
For support select “Enter a Call – Tool Support”: Register for
workshops:
 solvnet.synopsys.com
training.synopsys.com

